{"title":"基于纹理模型的高效乳房x线增强","authors":"M. Haindl, Václav Remes","doi":"10.1109/CBMS.2013.6627859","DOIUrl":null,"url":null,"abstract":"An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient textural model-based mammogram enhancement\",\"authors\":\"M. Haindl, Václav Remes\",\"doi\":\"10.1109/CBMS.2013.6627859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available.\",\"PeriodicalId\":20519,\"journal\":{\"name\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2013.6627859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available.