中心力的嬗变和伯特兰定理

IF 0.7 Q4 MECHANICS
C. Carimalo
{"title":"中心力的嬗变和伯特兰定理","authors":"C. Carimalo","doi":"10.2298/tam220602001c","DOIUrl":null,"url":null,"abstract":"The transmutation of central forces, or dual law, is a transformation linking potentials in power law relative to the distance, that is, those having a positive exponent to those having a negative exponent. A well known example is that of the Newtonian and Hookean potentials, which are also strongly linked by Bertrand?s famous theorem. This article shows how the use of dual law provides a better understanding of this theorem, and a new way to complete its demonstration.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"14 9 Pt 1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transmutation of central forces and Bertrand’s theorem\",\"authors\":\"C. Carimalo\",\"doi\":\"10.2298/tam220602001c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transmutation of central forces, or dual law, is a transformation linking potentials in power law relative to the distance, that is, those having a positive exponent to those having a negative exponent. A well known example is that of the Newtonian and Hookean potentials, which are also strongly linked by Bertrand?s famous theorem. This article shows how the use of dual law provides a better understanding of this theorem, and a new way to complete its demonstration.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"14 9 Pt 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam220602001c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam220602001c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

中心力的嬗变,或对偶定律,是将幂律中的势与距离,即具有正指数的势与具有负指数的势联系起来的一种转换。一个众所周知的例子是牛顿势和胡克势,它们也被伯特兰?S著名定理。本文展示了对偶律的使用如何提供了对该定理更好的理解,并提供了一种完成其论证的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transmutation of central forces and Bertrand’s theorem
The transmutation of central forces, or dual law, is a transformation linking potentials in power law relative to the distance, that is, those having a positive exponent to those having a negative exponent. A well known example is that of the Newtonian and Hookean potentials, which are also strongly linked by Bertrand?s famous theorem. This article shows how the use of dual law provides a better understanding of this theorem, and a new way to complete its demonstration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信