J. G. Precious, S. P. A. Kirubha, R. Premkumar, I. K. Evangeline
{"title":"脑胶质母细胞瘤的自动二维和三维分割","authors":"J. G. Precious, S. P. A. Kirubha, R. Premkumar, I. K. Evangeline","doi":"10.4015/s1016237222500557","DOIUrl":null,"url":null,"abstract":"The brain tumor is the most common destructive and deadly disease. In general, various imaging modalities such as CT, MRI and PET are used to evaluate the brain tumor. Magnetic resonance imaging (MRI) is a prominent diagnostic method for evaluating these tumors. Gliomas, due to their malignant nature and rapid development, are the most common and aggressive form of brain tumors. In the clinical routine, the method of identifying tumor borders from healthy cells is still a difficult task. Manual segmentation takes time, so we use a deep convolutional neural network to improve efficiency. We present a combined DNN architecture using U-net and MobilenetV2. It exploits both local characteristics and more global contextual characteristics from the 2D MRI FLAIR images. The proposed network has encoder and decoder architecture. The performance metrices such as dice loss, dice coefficient, accuracy and IOU have been calculated. Automated segmentation of 3D MRI is essential for the identification, assessment, and treatment of brain tumors although there is significant interest in machine-learning algorithms for computerized segmentation of brain tumors. The goal of this work is to perform 3D volumetric segmentation using BraTumIA. It is a widely available software application used to separate tumor characteristics on 3D brain MR volumes. BraTumIA has lately been used in a number of clinical trials. In this work, we have segmented 2D slices and 3D volumes of MRI brain tumor images.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AUTOMATIC 2D AND 3D SEGMENTATION OF GLIOBLASTOMA BRAIN TUMOR\",\"authors\":\"J. G. Precious, S. P. A. Kirubha, R. Premkumar, I. K. Evangeline\",\"doi\":\"10.4015/s1016237222500557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brain tumor is the most common destructive and deadly disease. In general, various imaging modalities such as CT, MRI and PET are used to evaluate the brain tumor. Magnetic resonance imaging (MRI) is a prominent diagnostic method for evaluating these tumors. Gliomas, due to their malignant nature and rapid development, are the most common and aggressive form of brain tumors. In the clinical routine, the method of identifying tumor borders from healthy cells is still a difficult task. Manual segmentation takes time, so we use a deep convolutional neural network to improve efficiency. We present a combined DNN architecture using U-net and MobilenetV2. It exploits both local characteristics and more global contextual characteristics from the 2D MRI FLAIR images. The proposed network has encoder and decoder architecture. The performance metrices such as dice loss, dice coefficient, accuracy and IOU have been calculated. Automated segmentation of 3D MRI is essential for the identification, assessment, and treatment of brain tumors although there is significant interest in machine-learning algorithms for computerized segmentation of brain tumors. The goal of this work is to perform 3D volumetric segmentation using BraTumIA. It is a widely available software application used to separate tumor characteristics on 3D brain MR volumes. BraTumIA has lately been used in a number of clinical trials. In this work, we have segmented 2D slices and 3D volumes of MRI brain tumor images.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237222500557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
AUTOMATIC 2D AND 3D SEGMENTATION OF GLIOBLASTOMA BRAIN TUMOR
The brain tumor is the most common destructive and deadly disease. In general, various imaging modalities such as CT, MRI and PET are used to evaluate the brain tumor. Magnetic resonance imaging (MRI) is a prominent diagnostic method for evaluating these tumors. Gliomas, due to their malignant nature and rapid development, are the most common and aggressive form of brain tumors. In the clinical routine, the method of identifying tumor borders from healthy cells is still a difficult task. Manual segmentation takes time, so we use a deep convolutional neural network to improve efficiency. We present a combined DNN architecture using U-net and MobilenetV2. It exploits both local characteristics and more global contextual characteristics from the 2D MRI FLAIR images. The proposed network has encoder and decoder architecture. The performance metrices such as dice loss, dice coefficient, accuracy and IOU have been calculated. Automated segmentation of 3D MRI is essential for the identification, assessment, and treatment of brain tumors although there is significant interest in machine-learning algorithms for computerized segmentation of brain tumors. The goal of this work is to perform 3D volumetric segmentation using BraTumIA. It is a widely available software application used to separate tumor characteristics on 3D brain MR volumes. BraTumIA has lately been used in a number of clinical trials. In this work, we have segmented 2D slices and 3D volumes of MRI brain tumor images.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.