基于群优化算法和多层感知器的白细胞分割与分类

Shahd Tarek, H. M. Ebied, A. Hassanien, M. Tolba
{"title":"基于群优化算法和多层感知器的白细胞分割与分类","authors":"Shahd Tarek, H. M. Ebied, A. Hassanien, M. Tolba","doi":"10.4018/IJSKD.2021040102","DOIUrl":null,"url":null,"abstract":"This study proposes a segmentation and classification system for early detection of blood disease; the proposed system consists of three phases. The first phase is segmenting white blood cells using multi-level thresholding optimized by the butterfly optimization algorithm to select the optimal threshold value to increase the accuracy. The second phase is extracting geometric and shape features of the segmented cells. The third phase is using the gray wolf optimizer to adopt the weights and biases of the multilayer perceptron to enhance the accuracy of classification between normal and leukemia cells, classify the normal cells to their five categories, and classify the leukemia to their four categories. The proposed system applies to different data sets (ALL-IDB2, LISC, and ASH-Image bank) and overcomes the segmentation and classification problems of microscopic images and shows an outstanding segmentation result, 98.02%; and the average classification accuracy between normal and leukemia cells is 98.58%, between white blood cell categories is 98.9%, and between leukemia types is 98.93%.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"180 1","pages":"16-30"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"White Blood Cells Segmentation and Classification Using Swarm Optimization Algorithms and Multilayer Perceptron\",\"authors\":\"Shahd Tarek, H. M. Ebied, A. Hassanien, M. Tolba\",\"doi\":\"10.4018/IJSKD.2021040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a segmentation and classification system for early detection of blood disease; the proposed system consists of three phases. The first phase is segmenting white blood cells using multi-level thresholding optimized by the butterfly optimization algorithm to select the optimal threshold value to increase the accuracy. The second phase is extracting geometric and shape features of the segmented cells. The third phase is using the gray wolf optimizer to adopt the weights and biases of the multilayer perceptron to enhance the accuracy of classification between normal and leukemia cells, classify the normal cells to their five categories, and classify the leukemia to their four categories. The proposed system applies to different data sets (ALL-IDB2, LISC, and ASH-Image bank) and overcomes the segmentation and classification problems of microscopic images and shows an outstanding segmentation result, 98.02%; and the average classification accuracy between normal and leukemia cells is 98.58%, between white blood cell categories is 98.9%, and between leukemia types is 98.93%.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"180 1\",\"pages\":\"16-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSKD.2021040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSKD.2021040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究提出一种用于血液疾病早期检测的分割分类系统;拟议的系统包括三个阶段。第一阶段是利用蝴蝶优化算法优化的多级阈值对白细胞进行分割,选择最优阈值以提高准确率。第二阶段是提取分割细胞的几何和形状特征。第三阶段是利用灰狼优化器,利用多层感知器的权重和偏置来提高正常细胞和白血病细胞的分类精度,将正常细胞分为5类,将白血病细胞分为4类。该系统适用于不同的数据集(ALL-IDB2、LISC和ASH-Image bank),克服了显微图像的分割和分类问题,分割结果为98.02%;正常细胞与白血病细胞的平均分类准确率为98.58%,白细胞分类之间的平均分类准确率为98.9%,白血病类型之间的平均分类准确率为98.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
White Blood Cells Segmentation and Classification Using Swarm Optimization Algorithms and Multilayer Perceptron
This study proposes a segmentation and classification system for early detection of blood disease; the proposed system consists of three phases. The first phase is segmenting white blood cells using multi-level thresholding optimized by the butterfly optimization algorithm to select the optimal threshold value to increase the accuracy. The second phase is extracting geometric and shape features of the segmented cells. The third phase is using the gray wolf optimizer to adopt the weights and biases of the multilayer perceptron to enhance the accuracy of classification between normal and leukemia cells, classify the normal cells to their five categories, and classify the leukemia to their four categories. The proposed system applies to different data sets (ALL-IDB2, LISC, and ASH-Image bank) and overcomes the segmentation and classification problems of microscopic images and shows an outstanding segmentation result, 98.02%; and the average classification accuracy between normal and leukemia cells is 98.58%, between white blood cell categories is 98.9%, and between leukemia types is 98.93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信