{"title":"动量减法方案中使用HISQ动作的矢量电流重整化","authors":"D. Hatton, C. Davies, G. Lepage, A. Lytle","doi":"10.22323/1.363.0016","DOIUrl":null,"url":null,"abstract":"As the only lattice vector current that does not require renormalisation is the point-split conserved current it is convenient to have a robust, precise and computationally cheap methodology for the calculation of vector current renormalisation factors, $Z_V$. Momentum subtraction schemes, such as RI-SMOM, implemented nonperturbatively on the lattice provide such a method if it can be shown that the systematic errors, e.g. from condensates, are well controlled. \nWe present $Z_V$ calculations for the conserved current in both the RI-SMOM and RI$'$-MOM momentum subtraction schemes as well as local current renormalisation in the RI-SMOM scheme. By performing these calculations at various values of the momentum scale $\\mu$ and different lattice spacings we can investigate the presence of power suppressed nonperturbative contributions and compare the results to expectations arising from the Ward-Takahashi identity. Our results show that the RI-SMOM scheme provides a well controlled determination of $Z_V$ but the standard RI$'$-MOM scheme does not. \nWe then present some preliminary uses of these $Z_V$ calculations in charm physics.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector current renormalisation in momentum subtraction schemes using the HISQ action\",\"authors\":\"D. Hatton, C. Davies, G. Lepage, A. Lytle\",\"doi\":\"10.22323/1.363.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the only lattice vector current that does not require renormalisation is the point-split conserved current it is convenient to have a robust, precise and computationally cheap methodology for the calculation of vector current renormalisation factors, $Z_V$. Momentum subtraction schemes, such as RI-SMOM, implemented nonperturbatively on the lattice provide such a method if it can be shown that the systematic errors, e.g. from condensates, are well controlled. \\nWe present $Z_V$ calculations for the conserved current in both the RI-SMOM and RI$'$-MOM momentum subtraction schemes as well as local current renormalisation in the RI-SMOM scheme. By performing these calculations at various values of the momentum scale $\\\\mu$ and different lattice spacings we can investigate the presence of power suppressed nonperturbative contributions and compare the results to expectations arising from the Ward-Takahashi identity. Our results show that the RI-SMOM scheme provides a well controlled determination of $Z_V$ but the standard RI$'$-MOM scheme does not. \\nWe then present some preliminary uses of these $Z_V$ calculations in charm physics.\",\"PeriodicalId\":8440,\"journal\":{\"name\":\"arXiv: High Energy Physics - Lattice\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vector current renormalisation in momentum subtraction schemes using the HISQ action
As the only lattice vector current that does not require renormalisation is the point-split conserved current it is convenient to have a robust, precise and computationally cheap methodology for the calculation of vector current renormalisation factors, $Z_V$. Momentum subtraction schemes, such as RI-SMOM, implemented nonperturbatively on the lattice provide such a method if it can be shown that the systematic errors, e.g. from condensates, are well controlled.
We present $Z_V$ calculations for the conserved current in both the RI-SMOM and RI$'$-MOM momentum subtraction schemes as well as local current renormalisation in the RI-SMOM scheme. By performing these calculations at various values of the momentum scale $\mu$ and different lattice spacings we can investigate the presence of power suppressed nonperturbative contributions and compare the results to expectations arising from the Ward-Takahashi identity. Our results show that the RI-SMOM scheme provides a well controlled determination of $Z_V$ but the standard RI$'$-MOM scheme does not.
We then present some preliminary uses of these $Z_V$ calculations in charm physics.