利用二维面波层析成像技术描述欧亚-阿拉伯板块持续碰撞带的构造活动

IF 0.7 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Seyed Hossein Abrehdari, Jon Karapetyan, H. Rahimi, E. Geodakyan
{"title":"利用二维面波层析成像技术描述欧亚-阿拉伯板块持续碰撞带的构造活动","authors":"Seyed Hossein Abrehdari, Jon Karapetyan, H. Rahimi, E. Geodakyan","doi":"10.2205/2023es000835","DOIUrl":null,"url":null,"abstract":"In order to better understand the regional tectonic activities of the continent-continent ongoing collision-compressed edge zone of the Eurasian-Arabic plates, 2D tomography maps of the Caucasus territory using the Rayleigh waves were generated. The 2D tomography images of this study, illustrate the large variety in surface wave propagation velocity in different complex geologic units of the Caucasus. To draw the 2D tomography maps, we accomplished a 2D-linear inversion procedure on the Rayleigh wave dispersion curves for the periods of 5 to 70 s (depth= ~180 km). To conduct this, local-regional data from ~1300 earthquakes (M≥3.9) recorded by the 49 broadband stations from 1999 to 2018 in a wide area with complicated tectonic units were used. In comparison with results of previous studies in Caucasus, the tomography maps for the long-periods (T= 50-70 s; depth ~180 km) are more influenced by the velocity structure of the uppermost mantle which demonstrate the ultralow and ultrahigh-velocity anomalies. The results for the medium-periods (30≤T≤45 s), the low-velocity zones coincide with areas thought to be correlated with underplating of the lower crust (e.g. shallow LAB), while, the high-velocity zones are usually demonstrating the presence of a normal continental crust over a stable and thick or oceanic-like lid. Short-periods (5≤T≤25 s) are more influenced by the ever-evolving deformations of the geological units, sedimentary basins, volcanic complexes, uplifts, and reveals a low-velocity small zone, on the NW slope of the Aragats volcano (depth= ~7 km), which is different from the results of other studies.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"122 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tectonic Activities Description in the Ongoing Collision Zone of the Eurasia-Arabia Plates Using 2D Surface Waves Tomography\",\"authors\":\"Seyed Hossein Abrehdari, Jon Karapetyan, H. Rahimi, E. Geodakyan\",\"doi\":\"10.2205/2023es000835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to better understand the regional tectonic activities of the continent-continent ongoing collision-compressed edge zone of the Eurasian-Arabic plates, 2D tomography maps of the Caucasus territory using the Rayleigh waves were generated. The 2D tomography images of this study, illustrate the large variety in surface wave propagation velocity in different complex geologic units of the Caucasus. To draw the 2D tomography maps, we accomplished a 2D-linear inversion procedure on the Rayleigh wave dispersion curves for the periods of 5 to 70 s (depth= ~180 km). To conduct this, local-regional data from ~1300 earthquakes (M≥3.9) recorded by the 49 broadband stations from 1999 to 2018 in a wide area with complicated tectonic units were used. In comparison with results of previous studies in Caucasus, the tomography maps for the long-periods (T= 50-70 s; depth ~180 km) are more influenced by the velocity structure of the uppermost mantle which demonstrate the ultralow and ultrahigh-velocity anomalies. The results for the medium-periods (30≤T≤45 s), the low-velocity zones coincide with areas thought to be correlated with underplating of the lower crust (e.g. shallow LAB), while, the high-velocity zones are usually demonstrating the presence of a normal continental crust over a stable and thick or oceanic-like lid. Short-periods (5≤T≤25 s) are more influenced by the ever-evolving deformations of the geological units, sedimentary basins, volcanic complexes, uplifts, and reveals a low-velocity small zone, on the NW slope of the Aragats volcano (depth= ~7 km), which is different from the results of other studies.\",\"PeriodicalId\":44680,\"journal\":{\"name\":\"Russian Journal of Earth Sciences\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2205/2023es000835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2205/2023es000835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地了解欧亚板块-阿拉伯板块持续碰撞压缩边缘带的区域构造活动,利用瑞利波对高加索地区进行了二维层析成像。本研究的二维断层成像图像说明了高加索不同复杂地质单元中表面波传播速度的巨大变化。为了绘制二维层析成像图,我们对Rayleigh波频散曲线进行了5 ~ 70 s(深度= ~180 km)的二维线性反演。为此,使用了1999年至2018年在一个构造单元复杂的大区域内,49个宽带站记录的~1300次地震(M≥3.9)的局域数据。与高加索地区以前的研究结果相比,该断层成像的时间较长(T= 50-70 s;深度~180 km)受上地幔速度结构的影响较大,表现为超低速和超高速异常。中期(30≤T≤45 s)的结果表明,低速带与下地壳底板相关(如浅层拉布拉多),而高速带通常显示出正常大陆地壳在稳定厚盖或类似海洋的盖上的存在。短周期(5≤T≤25 s)受地质单元、沉积盆地、火山杂岩、隆升等不断演化的变形影响较大,在阿拉加特火山NW坡(深度= ~7 km)上显示出一个低速小带,与其他研究结果不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tectonic Activities Description in the Ongoing Collision Zone of the Eurasia-Arabia Plates Using 2D Surface Waves Tomography
In order to better understand the regional tectonic activities of the continent-continent ongoing collision-compressed edge zone of the Eurasian-Arabic plates, 2D tomography maps of the Caucasus territory using the Rayleigh waves were generated. The 2D tomography images of this study, illustrate the large variety in surface wave propagation velocity in different complex geologic units of the Caucasus. To draw the 2D tomography maps, we accomplished a 2D-linear inversion procedure on the Rayleigh wave dispersion curves for the periods of 5 to 70 s (depth= ~180 km). To conduct this, local-regional data from ~1300 earthquakes (M≥3.9) recorded by the 49 broadband stations from 1999 to 2018 in a wide area with complicated tectonic units were used. In comparison with results of previous studies in Caucasus, the tomography maps for the long-periods (T= 50-70 s; depth ~180 km) are more influenced by the velocity structure of the uppermost mantle which demonstrate the ultralow and ultrahigh-velocity anomalies. The results for the medium-periods (30≤T≤45 s), the low-velocity zones coincide with areas thought to be correlated with underplating of the lower crust (e.g. shallow LAB), while, the high-velocity zones are usually demonstrating the presence of a normal continental crust over a stable and thick or oceanic-like lid. Short-periods (5≤T≤25 s) are more influenced by the ever-evolving deformations of the geological units, sedimentary basins, volcanic complexes, uplifts, and reveals a low-velocity small zone, on the NW slope of the Aragats volcano (depth= ~7 km), which is different from the results of other studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Earth Sciences
Russian Journal of Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
15.40%
发文量
41
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信