{"title":"不同晶粒尺寸下铝及其与碳化硼复合材料可加工性的比较研究","authors":"M. Adnan, Vinod Kumar","doi":"10.17577/IJERTV9IS090372","DOIUrl":null,"url":null,"abstract":"Aluminum metal composite are the most encouraging material which gives most noteworthy mechanical quality in the field of hard machined material. Inferable from its higher strength to weight proportion, it is widely applied in the aeronautical assembling and aviation industries. Throughout the long term, researchers continuously practices to reduce the cost of machining process and numerous analysts have indicated unmistakable fascination for expanding further developed machining measure. During machining of aluminum compound materials, the proper machining and cooling circumstances assume a basic part as it influences the machinability. In this study, three samples are taken pure aluminium particle size 50 micron (approx), aluminium with 10% reinforcement of boron carbide with 50 nanometer (approx). The effect of varying cutting speed and feed rate was analyzed on factors like feed force, cutting force, surface roughness and tool wear (Crater and flank wear). It was observed that at low feed rate and at high speed the machining of material was preferable.","PeriodicalId":13986,"journal":{"name":"International Journal of Engineering Research and","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Machinability of Aluminium and Its Composite with Boron Carbide by Varying Grain Size\",\"authors\":\"M. Adnan, Vinod Kumar\",\"doi\":\"10.17577/IJERTV9IS090372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum metal composite are the most encouraging material which gives most noteworthy mechanical quality in the field of hard machined material. Inferable from its higher strength to weight proportion, it is widely applied in the aeronautical assembling and aviation industries. Throughout the long term, researchers continuously practices to reduce the cost of machining process and numerous analysts have indicated unmistakable fascination for expanding further developed machining measure. During machining of aluminum compound materials, the proper machining and cooling circumstances assume a basic part as it influences the machinability. In this study, three samples are taken pure aluminium particle size 50 micron (approx), aluminium with 10% reinforcement of boron carbide with 50 nanometer (approx). The effect of varying cutting speed and feed rate was analyzed on factors like feed force, cutting force, surface roughness and tool wear (Crater and flank wear). It was observed that at low feed rate and at high speed the machining of material was preferable.\",\"PeriodicalId\":13986,\"journal\":{\"name\":\"International Journal of Engineering Research and\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research and\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17577/IJERTV9IS090372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research and","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17577/IJERTV9IS090372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparative Study of Machinability of Aluminium and Its Composite with Boron Carbide by Varying Grain Size
Aluminum metal composite are the most encouraging material which gives most noteworthy mechanical quality in the field of hard machined material. Inferable from its higher strength to weight proportion, it is widely applied in the aeronautical assembling and aviation industries. Throughout the long term, researchers continuously practices to reduce the cost of machining process and numerous analysts have indicated unmistakable fascination for expanding further developed machining measure. During machining of aluminum compound materials, the proper machining and cooling circumstances assume a basic part as it influences the machinability. In this study, three samples are taken pure aluminium particle size 50 micron (approx), aluminium with 10% reinforcement of boron carbide with 50 nanometer (approx). The effect of varying cutting speed and feed rate was analyzed on factors like feed force, cutting force, surface roughness and tool wear (Crater and flank wear). It was observed that at low feed rate and at high speed the machining of material was preferable.