里奇曲率流形中的极小超曲面

IF 1.2 1区 数学 Q1 MATHEMATICS
Q. Ding
{"title":"里奇曲率流形中的极小超曲面","authors":"Q. Ding","doi":"10.1515/crelle-2022-0050","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the angle estimate of distance functions from minimal hypersurfaces in manifolds of Ricci curvature bounded from below using Colding’s method in [T. H. Colding, Ricci curvature and volume convergence, Ann. of Math. (2) 145 1997, 3, 477–501]. With Cheeger–Colding theory, we obtain the Laplacian comparison for limits of distance functions from minimal hypersurfaces in the version of Ricci limit space. As an application, if a sequence of minimal hypersurfaces converges to a metric cone C ⁢ Y × ℝ n - k {CY\\times\\mathbb{R}^{n-k}} ( 2 ≤ k ≤ n {2\\leq k\\leq n} ) in a non-collapsing metric cone C ⁢ X × ℝ n - k {CX\\times\\mathbb{R}^{n-k}} obtained from ambient manifolds of almost nonnegative Ricci curvature, then we can prove a Frankel property for the cross section Y of CY. Namely, Y has only one connected component in X.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"20 1","pages":"247 - 282"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimal hypersurfaces in manifolds of Ricci curvature bounded below\",\"authors\":\"Q. Ding\",\"doi\":\"10.1515/crelle-2022-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the angle estimate of distance functions from minimal hypersurfaces in manifolds of Ricci curvature bounded from below using Colding’s method in [T. H. Colding, Ricci curvature and volume convergence, Ann. of Math. (2) 145 1997, 3, 477–501]. With Cheeger–Colding theory, we obtain the Laplacian comparison for limits of distance functions from minimal hypersurfaces in the version of Ricci limit space. As an application, if a sequence of minimal hypersurfaces converges to a metric cone C ⁢ Y × ℝ n - k {CY\\\\times\\\\mathbb{R}^{n-k}} ( 2 ≤ k ≤ n {2\\\\leq k\\\\leq n} ) in a non-collapsing metric cone C ⁢ X × ℝ n - k {CX\\\\times\\\\mathbb{R}^{n-k}} obtained from ambient manifolds of almost nonnegative Ricci curvature, then we can prove a Frankel property for the cross section Y of CY. Namely, Y has only one connected component in X.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"20 1\",\"pages\":\"247 - 282\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0050\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0050","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文利用文献[T. H.]中的Colding方法,研究了从下有界的Ricci曲率流形中最小超曲面距离函数的角度估计。安。里奇曲率与体积收敛。数学。(2) [j].中国科学:地球科学,2003,31(2):477 - 481。利用Cheeger-Colding理论,得到了Ricci极限空间中最小超曲面上距离函数极限的拉普拉斯比较。作为一个应用,如果一个极小超曲面序列收敛于一个{非坍缩CY\times\mathbb{R} ^n{-k}}({2≤k≤n2 \leq k \leq n)在一个几乎非负Ricci曲率的环境流形C≠X ×∈n}-k{ CX \times\mathbb{R} ^n-k中,那么我们就可以证明CY的截面Y的一个Frankel性质,即Y在X中只有一个连通分量。{}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal hypersurfaces in manifolds of Ricci curvature bounded below
Abstract In this paper, we study the angle estimate of distance functions from minimal hypersurfaces in manifolds of Ricci curvature bounded from below using Colding’s method in [T. H. Colding, Ricci curvature and volume convergence, Ann. of Math. (2) 145 1997, 3, 477–501]. With Cheeger–Colding theory, we obtain the Laplacian comparison for limits of distance functions from minimal hypersurfaces in the version of Ricci limit space. As an application, if a sequence of minimal hypersurfaces converges to a metric cone C ⁢ Y × ℝ n - k {CY\times\mathbb{R}^{n-k}} ( 2 ≤ k ≤ n {2\leq k\leq n} ) in a non-collapsing metric cone C ⁢ X × ℝ n - k {CX\times\mathbb{R}^{n-k}} obtained from ambient manifolds of almost nonnegative Ricci curvature, then we can prove a Frankel property for the cross section Y of CY. Namely, Y has only one connected component in X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信