非局部m-耗散微分包含的弛豫

IF 0.8 4区 数学 Q2 MATHEMATICS
S. Bilal, O. Cârja, T. Donchev, N. Javaid, A. Lazu
{"title":"非局部m-耗散微分包含的弛豫","authors":"S. Bilal, O. Cârja, T. Donchev, N. Javaid, A. Lazu","doi":"10.2478/auom-2019-0033","DOIUrl":null,"url":null,"abstract":"Abstract We show here that the set of the integral solutions of a nonlocal differential inclusion is dense in the set of the solution set of the corresponding relaxed differential inclusion. We further define a notion of limit solution and show that the set of limit solutions is closed and is the closure of the set of integral solutions. An illustrative example is provided.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"4 1","pages":"45 - 63"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Relaxation of nonlocal m-dissipative differential inclusions\",\"authors\":\"S. Bilal, O. Cârja, T. Donchev, N. Javaid, A. Lazu\",\"doi\":\"10.2478/auom-2019-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show here that the set of the integral solutions of a nonlocal differential inclusion is dense in the set of the solution set of the corresponding relaxed differential inclusion. We further define a notion of limit solution and show that the set of limit solutions is closed and is the closure of the set of integral solutions. An illustrative example is provided.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"4 1\",\"pages\":\"45 - 63\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2019-0033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2019-0033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文证明了非局部微分包含的积分解的集合在相应的松弛微分包含的解集的集合中是密集的。进一步定义了极限解的概念,证明了极限解的集合是闭的,并且是积分解集合的闭包。给出了一个说明性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relaxation of nonlocal m-dissipative differential inclusions
Abstract We show here that the set of the integral solutions of a nonlocal differential inclusion is dense in the set of the solution set of the corresponding relaxed differential inclusion. We further define a notion of limit solution and show that the set of limit solutions is closed and is the closure of the set of integral solutions. An illustrative example is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信