深度域自适应的流形引导标签转移

Breton L. Minnehan, A. Savakis
{"title":"深度域自适应的流形引导标签转移","authors":"Breton L. Minnehan, A. Savakis","doi":"10.1109/CVPRW.2017.104","DOIUrl":null,"url":null,"abstract":"We propose a novel domain adaptation method for deep learning that combines adaptive batch normalization to produce a common feature-space between domains and label transfer with subspace alignment on deep features. The first step of our method automatically conditions the features from the source/target domain to have similar statistical distributions by normalizing the activations in each layer of our network using adaptive batch normalization. We then examine the clustering properties of the normalized features on a manifold to determine if the target features are well suited for the second of our algorithm, label-transfer. The second step of our method performs subspace alignment and k-means clustering on the feature manifold to transfer labels from the closest source cluster to each target cluster. The proposed manifold guided label transfer methods produce state of the art results for deep adaptation on several standard digit recognition datasets.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"6 1","pages":"744-752"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Manifold Guided Label Transfer for Deep Domain Adaptation\",\"authors\":\"Breton L. Minnehan, A. Savakis\",\"doi\":\"10.1109/CVPRW.2017.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel domain adaptation method for deep learning that combines adaptive batch normalization to produce a common feature-space between domains and label transfer with subspace alignment on deep features. The first step of our method automatically conditions the features from the source/target domain to have similar statistical distributions by normalizing the activations in each layer of our network using adaptive batch normalization. We then examine the clustering properties of the normalized features on a manifold to determine if the target features are well suited for the second of our algorithm, label-transfer. The second step of our method performs subspace alignment and k-means clustering on the feature manifold to transfer labels from the closest source cluster to each target cluster. The proposed manifold guided label transfer methods produce state of the art results for deep adaptation on several standard digit recognition datasets.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"6 1\",\"pages\":\"744-752\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种新的深度学习领域自适应方法,该方法结合了自适应批归一化来产生域之间的公共特征空间和深度特征上具有子空间对齐的标签转移。我们方法的第一步是通过使用自适应批归一化对网络每层中的激活进行归一化,自动地将源/目标域的特征条件化,使其具有相似的统计分布。然后,我们检查流形上归一化特征的聚类属性,以确定目标特征是否非常适合我们的算法的第二步,标签转移。该方法的第二步在特征流形上执行子空间对齐和k-means聚类,将标签从最近的源聚类转移到每个目标聚类。所提出的歧管引导标签转移方法产生了对几个标准数字识别数据集进行深度适应的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifold Guided Label Transfer for Deep Domain Adaptation
We propose a novel domain adaptation method for deep learning that combines adaptive batch normalization to produce a common feature-space between domains and label transfer with subspace alignment on deep features. The first step of our method automatically conditions the features from the source/target domain to have similar statistical distributions by normalizing the activations in each layer of our network using adaptive batch normalization. We then examine the clustering properties of the normalized features on a manifold to determine if the target features are well suited for the second of our algorithm, label-transfer. The second step of our method performs subspace alignment and k-means clustering on the feature manifold to transfer labels from the closest source cluster to each target cluster. The proposed manifold guided label transfer methods produce state of the art results for deep adaptation on several standard digit recognition datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信