冷凝器结垢对蒸汽压缩制冷系统性能的影响

Naveen Solanki, A. Arora, S. Kaushik
{"title":"冷凝器结垢对蒸汽压缩制冷系统性能的影响","authors":"Naveen Solanki, A. Arora, S. Kaushik","doi":"10.1155/2015/756452","DOIUrl":null,"url":null,"abstract":"Effect of condenser fouling is evaluated on the performance of a vapour compression system with refrigerants HFO1234yf and HFO1234ze as an alternative to HFC134a. The condenser coolant temperature has been varied between 35 and 40°C to evaluate the effect of fouling at different condenser temperatures. A simulation model is developed in EES for computing the results. The results have been computed by varying condenser conductance. The same has been validated with literature available before calculating the results. It is observed that the condenser fouling has larger effect on compressor power (%) as it increases up to 9.12 for R1234yf and 7.41 for R1234ze, whereas for R134a its value increases up to 7.38. The cooling capacity (%) decreases up to 13.25 for R1234yf and 8.62 for R1234ze, whereas for R134a its value decreases up to 8.76. The maximum percentage of decrease in value of COP is up to 19.29 for R1234yf and 14.47 for R1234ze, whereas for R134a its value decreases up to 14.49. The second-law efficiency is also observed to decrease with decrease in the condenser conductance. The performance of HFO1234ze is found to be better under fouled conditions in comparison to R134a and R1234yf.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"5 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of Condenser Fouling on Performance of Vapor Compression Refrigeration System\",\"authors\":\"Naveen Solanki, A. Arora, S. Kaushik\",\"doi\":\"10.1155/2015/756452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effect of condenser fouling is evaluated on the performance of a vapour compression system with refrigerants HFO1234yf and HFO1234ze as an alternative to HFC134a. The condenser coolant temperature has been varied between 35 and 40°C to evaluate the effect of fouling at different condenser temperatures. A simulation model is developed in EES for computing the results. The results have been computed by varying condenser conductance. The same has been validated with literature available before calculating the results. It is observed that the condenser fouling has larger effect on compressor power (%) as it increases up to 9.12 for R1234yf and 7.41 for R1234ze, whereas for R134a its value increases up to 7.38. The cooling capacity (%) decreases up to 13.25 for R1234yf and 8.62 for R1234ze, whereas for R134a its value decreases up to 8.76. The maximum percentage of decrease in value of COP is up to 19.29 for R1234yf and 14.47 for R1234ze, whereas for R134a its value decreases up to 14.49. The second-law efficiency is also observed to decrease with decrease in the condenser conductance. The performance of HFO1234ze is found to be better under fouled conditions in comparison to R134a and R1234yf.\",\"PeriodicalId\":17290,\"journal\":{\"name\":\"Journal of Thermodynamics\",\"volume\":\"5 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/756452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/756452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

以HFO1234yf和HFO1234ze作为制冷剂替代HFC134a,评价了冷凝器结垢对蒸汽压缩系统性能的影响。冷凝器冷却液温度在35 ~ 40℃之间变化,以评价不同冷凝器温度下结垢的影响。在EES中建立了仿真模型来计算结果。结果是通过改变电容器电导计算出来的。在计算结果之前,已经用现有的文献进行了验证。观察到冷凝器结垢对压缩机功率(%)的影响较大,R1234yf和R1234ze分别增大到9.12和7.41,而R134a增大到7.38。R1234yf和R1234ze的冷却能力(%)分别下降了13.25和8.62,而R134a的冷却能力(%)下降了8.76。R1234yf和R1234ze的COP值最大降幅百分比分别为19.29和14.47,而R134a的COP值最大降幅百分比为14.49。第二定律效率也随电容器电导的减小而减小。与R134a和R1234yf相比,HFO1234ze在污染条件下的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Condenser Fouling on Performance of Vapor Compression Refrigeration System
Effect of condenser fouling is evaluated on the performance of a vapour compression system with refrigerants HFO1234yf and HFO1234ze as an alternative to HFC134a. The condenser coolant temperature has been varied between 35 and 40°C to evaluate the effect of fouling at different condenser temperatures. A simulation model is developed in EES for computing the results. The results have been computed by varying condenser conductance. The same has been validated with literature available before calculating the results. It is observed that the condenser fouling has larger effect on compressor power (%) as it increases up to 9.12 for R1234yf and 7.41 for R1234ze, whereas for R134a its value increases up to 7.38. The cooling capacity (%) decreases up to 13.25 for R1234yf and 8.62 for R1234ze, whereas for R134a its value decreases up to 8.76. The maximum percentage of decrease in value of COP is up to 19.29 for R1234yf and 14.47 for R1234ze, whereas for R134a its value decreases up to 14.49. The second-law efficiency is also observed to decrease with decrease in the condenser conductance. The performance of HFO1234ze is found to be better under fouled conditions in comparison to R134a and R1234yf.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信