电润湿液体晶体仿生复眼的设计与仿真

Q3 Engineering
Zhao Rui, P. Chao, Zhang Kai, Kong Meimei, Chen Tao, Guan Jianfei, Liang Zhongcheng
{"title":"电润湿液体晶体仿生复眼的设计与仿真","authors":"Zhao Rui, P. Chao, Zhang Kai, Kong Meimei, Chen Tao, Guan Jianfei, Liang Zhongcheng","doi":"10.12086/OEE.2021.200120","DOIUrl":null,"url":null,"abstract":"To solve the problem that the bionic compound eye system can't zoom adaptively, a zoomable bionic compound eye system based on electrowetting-on-dielectric liquid lens cambered array is proposed. The influence of the system structure on the imaging performance is analyzed, and the adaptive zoom capability of the system and the moving range of the corresponding image plane are calculated. The results show that the field of view angle increases with the increase of the curvature of the base. Compared with the non-uniform lens array, the uniform lens array can significantly reduce the defocus aberration of the system. Reducing the size of the lens unit can also decrease the defocus aberration of the edge lens. When the object distance or receiver position is changed, the defocus aberration of the system will be reduced by adjusting the focal length of the lens unit. The movable range of the system receiver is 1.9 mm~15 mm.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and simulation of bionic compound eye with electrowetting liquid lens\",\"authors\":\"Zhao Rui, P. Chao, Zhang Kai, Kong Meimei, Chen Tao, Guan Jianfei, Liang Zhongcheng\",\"doi\":\"10.12086/OEE.2021.200120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem that the bionic compound eye system can't zoom adaptively, a zoomable bionic compound eye system based on electrowetting-on-dielectric liquid lens cambered array is proposed. The influence of the system structure on the imaging performance is analyzed, and the adaptive zoom capability of the system and the moving range of the corresponding image plane are calculated. The results show that the field of view angle increases with the increase of the curvature of the base. Compared with the non-uniform lens array, the uniform lens array can significantly reduce the defocus aberration of the system. Reducing the size of the lens unit can also decrease the defocus aberration of the edge lens. When the object distance or receiver position is changed, the defocus aberration of the system will be reduced by adjusting the focal length of the lens unit. The movable range of the system receiver is 1.9 mm~15 mm.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

针对仿生复眼系统不能自适应变焦的问题,提出了一种基于电润湿介质液体透镜曲面阵列的可变焦仿生复眼系统。分析了系统结构对成像性能的影响,计算了系统的自适应变焦能力和相应成像平面的移动范围。结果表明,视场角度随基底曲率的增大而增大。与非均匀透镜阵列相比,均匀透镜阵列可以显著降低系统的离焦像差。减小透镜单元的尺寸也可以减小边缘透镜的离焦像差。当物体距离或接收器位置发生变化时,通过调整透镜单元的焦距来减小系统的离焦像差。系统接收机的活动范围为1.9 mm~ 15mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and simulation of bionic compound eye with electrowetting liquid lens
To solve the problem that the bionic compound eye system can't zoom adaptively, a zoomable bionic compound eye system based on electrowetting-on-dielectric liquid lens cambered array is proposed. The influence of the system structure on the imaging performance is analyzed, and the adaptive zoom capability of the system and the moving range of the corresponding image plane are calculated. The results show that the field of view angle increases with the increase of the curvature of the base. Compared with the non-uniform lens array, the uniform lens array can significantly reduce the defocus aberration of the system. Reducing the size of the lens unit can also decrease the defocus aberration of the edge lens. When the object distance or receiver position is changed, the defocus aberration of the system will be reduced by adjusting the focal length of the lens unit. The movable range of the system receiver is 1.9 mm~15 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信