Alexandra Uma, Tommaso Fornaciari, Dirk Hovy, Silviu Paun, Barbara Plank, Massimo Poesio
{"title":"软损失函数的一种情况","authors":"Alexandra Uma, Tommaso Fornaciari, Dirk Hovy, Silviu Paun, Barbara Plank, Massimo Poesio","doi":"10.1609/hcomp.v8i1.7478","DOIUrl":null,"url":null,"abstract":"Recently, Peterson et al. provided evidence of the benefits of using probabilistic soft labels generated from crowd annotations for training a computer vision model, showing that using such labels maximizes performance of the models over unseen data. In this paper, we generalize these results by showing that training with soft labels is an effective method for using crowd annotations in several other ai tasks besides the one studied by Peterson et al., and also when their performance is compared with that of state-of-the-art methods for learning from crowdsourced data.","PeriodicalId":87339,"journal":{"name":"Proceedings of the ... AAAI Conference on Human Computation and Crowdsourcing","volume":"19 1","pages":"173-177"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Case for Soft Loss Functions\",\"authors\":\"Alexandra Uma, Tommaso Fornaciari, Dirk Hovy, Silviu Paun, Barbara Plank, Massimo Poesio\",\"doi\":\"10.1609/hcomp.v8i1.7478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Peterson et al. provided evidence of the benefits of using probabilistic soft labels generated from crowd annotations for training a computer vision model, showing that using such labels maximizes performance of the models over unseen data. In this paper, we generalize these results by showing that training with soft labels is an effective method for using crowd annotations in several other ai tasks besides the one studied by Peterson et al., and also when their performance is compared with that of state-of-the-art methods for learning from crowdsourced data.\",\"PeriodicalId\":87339,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Human Computation and Crowdsourcing\",\"volume\":\"19 1\",\"pages\":\"173-177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Human Computation and Crowdsourcing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/hcomp.v8i1.7478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Human Computation and Crowdsourcing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/hcomp.v8i1.7478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recently, Peterson et al. provided evidence of the benefits of using probabilistic soft labels generated from crowd annotations for training a computer vision model, showing that using such labels maximizes performance of the models over unseen data. In this paper, we generalize these results by showing that training with soft labels is an effective method for using crowd annotations in several other ai tasks besides the one studied by Peterson et al., and also when their performance is compared with that of state-of-the-art methods for learning from crowdsourced data.