Sondheimer振荡对ii型Weyl半金属WP2非欧姆流动的探测

M. V. Delft, Yaxian Wang, C. Putzke, J. Oswald, Georgios Varnavides, Christina A. C. Garcia, Chunyu Guo, H. Schmid, Vicky Süβ, H. Borrmann, J. Diaz, Yan Sun, C. Felser, B. Gotsmann, P. Narang, P. Moll
{"title":"Sondheimer振荡对ii型Weyl半金属WP2非欧姆流动的探测","authors":"M. V. Delft, Yaxian Wang, C. Putzke, J. Oswald, Georgios Varnavides, Christina A. C. Garcia, Chunyu Guo, H. Schmid, Vicky Süβ, H. Borrmann, J. Diaz, Yan Sun, C. Felser, B. Gotsmann, P. Narang, P. Moll","doi":"10.5281/zenodo.4675599","DOIUrl":null,"url":null,"abstract":"\n As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm’s law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes and more exotic mixtures thereof. So far, an in situ, in-operando methodology to obtain these parameters self-consistently within a micro/nanodevice, and thereby identify its conduction regime, is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR in micro-devices even when lMR>>d. This gives information on the bulk lMR complementary to quantum oscillations, which are sensitive to all scattering processes. We extract lMR from the Sondheimer amplitude in the topological semi-metal WP2, at elevated temperatures up to T~50 K, in a range most relevant for hydrodynamic transport phenomena. Our data on μm-sized devices are in excellent agreement with experimental reports of the large bulk lMR and thus confirm that WP2 can be microfabricated without degradation. Indeed, the measured scattering rates match well with those of theoretically predicted electron-phonon scattering, thus supporting the notion of strong momentum exchange between electrons and phonons in WP2 at these temperatures. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices in studying non-ohmic electron flow.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sondheimer oscillations as a probe of non-ohmic flow in type-II Weyl semimetal WP2\",\"authors\":\"M. V. Delft, Yaxian Wang, C. Putzke, J. Oswald, Georgios Varnavides, Christina A. C. Garcia, Chunyu Guo, H. Schmid, Vicky Süβ, H. Borrmann, J. Diaz, Yan Sun, C. Felser, B. Gotsmann, P. Narang, P. Moll\",\"doi\":\"10.5281/zenodo.4675599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm’s law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes and more exotic mixtures thereof. So far, an in situ, in-operando methodology to obtain these parameters self-consistently within a micro/nanodevice, and thereby identify its conduction regime, is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR in micro-devices even when lMR>>d. This gives information on the bulk lMR complementary to quantum oscillations, which are sensitive to all scattering processes. We extract lMR from the Sondheimer amplitude in the topological semi-metal WP2, at elevated temperatures up to T~50 K, in a range most relevant for hydrodynamic transport phenomena. Our data on μm-sized devices are in excellent agreement with experimental reports of the large bulk lMR and thus confirm that WP2 can be microfabricated without degradation. Indeed, the measured scattering rates match well with those of theoretically predicted electron-phonon scattering, thus supporting the notion of strong momentum exchange between electrons and phonons in WP2 at these temperatures. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices in studying non-ohmic electron flow.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/zenodo.4675599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.4675599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当导体在电子应用中收缩时,微观的传导过程会导致与欧姆定律的强烈偏差。根据动量守恒(lMC)和弛豫(lMR)电子散射的长度尺度,以及器件尺寸(d),电流可能从欧姆状态转变为弹道状态,再转变为流体动力状态,以及更奇特的混合状态。到目前为止,一种在微/纳米器件中获得这些参数的原位、操作方法,从而确定其传导状态,是严重缺乏的。在这种情况下,我们利用Sondheimer振荡,即由于螺旋电子运动引起的半经典磁阻振荡,作为在微器件中获得lMR的方法,即使lMR>>d。这提供了对所有散射过程敏感的量子振荡互补的体lMR信息。我们从拓扑半金属WP2的桑德海默振幅中提取了lMR,温度高达T~50 K,在与流体动力输运现象最相关的范围内。我们在μm尺寸器件上的数据与大体积lMR的实验报告非常吻合,从而证实了WP2可以微加工而不会降解。事实上,测量到的散射率与理论预测的电子-声子散射率吻合得很好,因此支持了在这些温度下WP2中电子和声子之间强动量交换的概念。这些结果最终确定了桑德海默振荡作为研究非欧姆电子流的微器件中lMR的定量探针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sondheimer oscillations as a probe of non-ohmic flow in type-II Weyl semimetal WP2
As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm’s law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes and more exotic mixtures thereof. So far, an in situ, in-operando methodology to obtain these parameters self-consistently within a micro/nanodevice, and thereby identify its conduction regime, is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR in micro-devices even when lMR>>d. This gives information on the bulk lMR complementary to quantum oscillations, which are sensitive to all scattering processes. We extract lMR from the Sondheimer amplitude in the topological semi-metal WP2, at elevated temperatures up to T~50 K, in a range most relevant for hydrodynamic transport phenomena. Our data on μm-sized devices are in excellent agreement with experimental reports of the large bulk lMR and thus confirm that WP2 can be microfabricated without degradation. Indeed, the measured scattering rates match well with those of theoretically predicted electron-phonon scattering, thus supporting the notion of strong momentum exchange between electrons and phonons in WP2 at these temperatures. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices in studying non-ohmic electron flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信