时间尺度上四元数组合脉冲矩阵动力方程的基本解矩阵和柯西性质

Pub Date : 2021-06-01 DOI:10.2478/auom-2021-0021
Chao Wang, Zhien Li, R. Agarwal
{"title":"时间尺度上四元数组合脉冲矩阵动力方程的基本解矩阵和柯西性质","authors":"Chao Wang, Zhien Li, R. Agarwal","doi":"10.2478/auom-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we establish some basic results for quaternion combined impulsive matrix dynamic equation on time scales for the first time. Quaternion matrix combined-exponential function is introduced and some basic properties are obtained. Based on this, the fundamental solution matrix and corresponding Cauchy matrix for a class of quaternion matrix dynamic equation with combined derivatives and bi-directional impulses are derived.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental solution matrix and Cauchy properties of quaternion combined impulsive matrix dynamic equation on time scales\",\"authors\":\"Chao Wang, Zhien Li, R. Agarwal\",\"doi\":\"10.2478/auom-2021-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we establish some basic results for quaternion combined impulsive matrix dynamic equation on time scales for the first time. Quaternion matrix combined-exponential function is introduced and some basic properties are obtained. Based on this, the fundamental solution matrix and corresponding Cauchy matrix for a class of quaternion matrix dynamic equation with combined derivatives and bi-directional impulses are derived.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首次建立了时间尺度上四元数组合脉冲矩阵动力学方程的一些基本结果。引入了四元数矩阵-指数函数,得到了四元数矩阵-指数函数的一些基本性质。在此基础上,导出了一类具有组合导数和双向脉冲的四元数矩阵动态方程的基本解矩阵和对应的柯西矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fundamental solution matrix and Cauchy properties of quaternion combined impulsive matrix dynamic equation on time scales
Abstract In this paper, we establish some basic results for quaternion combined impulsive matrix dynamic equation on time scales for the first time. Quaternion matrix combined-exponential function is introduced and some basic properties are obtained. Based on this, the fundamental solution matrix and corresponding Cauchy matrix for a class of quaternion matrix dynamic equation with combined derivatives and bi-directional impulses are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信