对多层梁三点弯曲行为二维渐近理论发展的贡献:在正交各向异性相夹心梁中的应用

A. D. Pagui, A. Foudjet, J. S. T. Mabekou, T. Ekoume, P. K. Talla
{"title":"对多层梁三点弯曲行为二维渐近理论发展的贡献:在正交各向异性相夹心梁中的应用","authors":"A. D. Pagui, A. Foudjet, J. S. T. Mabekou, T. Ekoume, P. K. Talla","doi":"10.24018/ejers.2020.5.10.2168","DOIUrl":null,"url":null,"abstract":"The objective of this work is to present a methodology for analyzing the behavior in bending of the structure of sandwich beams base on the second order of asymptotic method. This work is in continuation with the work of Talla [1]. This work includes the knowledge of all the physical elastic constant of the sandwich beams. This result confirms the fact that the second order of asymptotic method doesn’t bring a significative change in the behavior of the solution until a certain point. The curves have been obtained by the software named python. This result was predictable because the asymptotic methods deal with small variation due to the presence of the epsilon parameter, which is very small.","PeriodicalId":12029,"journal":{"name":"European Journal of Engineering Research and Science","volume":"33 1","pages":"1191-1198"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Contribution to the Development of a Two-Dimensional Asymptotic Theory of the Three-Point Bending Behaviour of Multi-Layered Beams: Applications to Orthotropic Phase Sandwich Beams\",\"authors\":\"A. D. Pagui, A. Foudjet, J. S. T. Mabekou, T. Ekoume, P. K. Talla\",\"doi\":\"10.24018/ejers.2020.5.10.2168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this work is to present a methodology for analyzing the behavior in bending of the structure of sandwich beams base on the second order of asymptotic method. This work is in continuation with the work of Talla [1]. This work includes the knowledge of all the physical elastic constant of the sandwich beams. This result confirms the fact that the second order of asymptotic method doesn’t bring a significative change in the behavior of the solution until a certain point. The curves have been obtained by the software named python. This result was predictable because the asymptotic methods deal with small variation due to the presence of the epsilon parameter, which is very small.\",\"PeriodicalId\":12029,\"journal\":{\"name\":\"European Journal of Engineering Research and Science\",\"volume\":\"33 1\",\"pages\":\"1191-1198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Engineering Research and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejers.2020.5.10.2168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering Research and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejers.2020.5.10.2168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是提出一种基于二阶渐近方法分析夹层梁结构弯曲行为的方法。这项工作是Talla[1]工作的延续。这项工作包括了夹层梁的所有物理弹性常数的知识。这一结果证实了二阶渐近方法直到某一点才使解的行为发生显著变化的事实。用python软件对曲线进行了绘制。这个结果是可以预测的,因为渐近方法处理的是由于非常小的epsilon参数的存在而引起的小变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Contribution to the Development of a Two-Dimensional Asymptotic Theory of the Three-Point Bending Behaviour of Multi-Layered Beams: Applications to Orthotropic Phase Sandwich Beams
The objective of this work is to present a methodology for analyzing the behavior in bending of the structure of sandwich beams base on the second order of asymptotic method. This work is in continuation with the work of Talla [1]. This work includes the knowledge of all the physical elastic constant of the sandwich beams. This result confirms the fact that the second order of asymptotic method doesn’t bring a significative change in the behavior of the solution until a certain point. The curves have been obtained by the software named python. This result was predictable because the asymptotic methods deal with small variation due to the presence of the epsilon parameter, which is very small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信