最优前馈深度神经网络用于淋巴疾病检测与分类

N. Behera, M. Umaselvi, Devikanniga Devarajan, B. Komathi, Pragnesh B. Parmar, Raj kumar Gupta
{"title":"最优前馈深度神经网络用于淋巴疾病检测与分类","authors":"N. Behera, M. Umaselvi, Devikanniga Devarajan, B. Komathi, Pragnesh B. Parmar, Raj kumar Gupta","doi":"10.1109/IDCIoT56793.2023.10053387","DOIUrl":null,"url":null,"abstract":"Lymphatic system reinforces immune system by degrading as well as eliminating the cancer cells, and pathogens, rejecting unwanted sources, debris, and dead blood cells. It assists in assimilating the fat vitamins and fat-soluble from digestive system and delivers them to body tissues. Furthermore, the interstitial spaces amongst cells eradicate the extra fluids and redundant substances from body. Automatic diagnosis of cancer metastases in lymph nodes has the prospective to increase calculation of prognoses for patients. Machine learning¬based classification methods offer provision for the decision¬making method in various regions of healthcare, involving screening, diagnosis, prognosis, and so on. This study introduces an Optimal Feed Forward Deep Neural Network for Lymph Disease Detection and Classification (OFFDNN-LDC) model. The presented OFFDNN-LDC model intends to apply the classification model to determine the presence of lymph diseases in medical data. For attaining this, the presented OFFDNN-LDC model exploits the FFDNN model as a classifier to assign effective class labels. Besides, the presented OFFDNN-LDC model executes root mean square propagation (RMSProp) optimizer to properly elect the hyperparameter values of the FFDNN model. A series of simulations are performed for demonstrating the improved outcome of the OFFDNN-LDC model. The experimental values referred that the OFFDNN-LDC model is superior to other models.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Feed Forward Deep Neural Network for Lymph Disease Detection and Classification\",\"authors\":\"N. Behera, M. Umaselvi, Devikanniga Devarajan, B. Komathi, Pragnesh B. Parmar, Raj kumar Gupta\",\"doi\":\"10.1109/IDCIoT56793.2023.10053387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lymphatic system reinforces immune system by degrading as well as eliminating the cancer cells, and pathogens, rejecting unwanted sources, debris, and dead blood cells. It assists in assimilating the fat vitamins and fat-soluble from digestive system and delivers them to body tissues. Furthermore, the interstitial spaces amongst cells eradicate the extra fluids and redundant substances from body. Automatic diagnosis of cancer metastases in lymph nodes has the prospective to increase calculation of prognoses for patients. Machine learning¬based classification methods offer provision for the decision¬making method in various regions of healthcare, involving screening, diagnosis, prognosis, and so on. This study introduces an Optimal Feed Forward Deep Neural Network for Lymph Disease Detection and Classification (OFFDNN-LDC) model. The presented OFFDNN-LDC model intends to apply the classification model to determine the presence of lymph diseases in medical data. For attaining this, the presented OFFDNN-LDC model exploits the FFDNN model as a classifier to assign effective class labels. Besides, the presented OFFDNN-LDC model executes root mean square propagation (RMSProp) optimizer to properly elect the hyperparameter values of the FFDNN model. A series of simulations are performed for demonstrating the improved outcome of the OFFDNN-LDC model. The experimental values referred that the OFFDNN-LDC model is superior to other models.\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"3 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

淋巴系统通过降解和消除癌细胞、病原体、排斥不需要的来源、碎片和死血细胞来增强免疫系统。它有助于消化系统吸收脂肪维生素和脂溶性维生素,并将其输送到身体组织。此外,细胞间的间隙可以清除体内多余的液体和多余的物质。淋巴结转移癌的自动诊断有望增加患者预后的计算。基于机器学习的分类方法为医疗保健的各个领域提供决策方法,包括筛查、诊断、预后等。本文介绍了一种用于淋巴疾病检测和分类的最优前馈深度神经网络(OFFDNN-LDC)模型。本文提出的OFFDNN-LDC模型旨在应用分类模型来确定医疗数据中是否存在淋巴疾病。为了实现这一点,本文提出的OFFDNN-LDC模型利用FFDNN模型作为分类器来分配有效的类标签。此外,所提出的OFFDNN-LDC模型采用RMSProp(均方根传播)优化器来正确选择FFDNN模型的超参数值。通过一系列的仿真验证了OFFDNN-LDC模型的改进结果。实验值表明,OFFDNN-LDC模型优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Feed Forward Deep Neural Network for Lymph Disease Detection and Classification
Lymphatic system reinforces immune system by degrading as well as eliminating the cancer cells, and pathogens, rejecting unwanted sources, debris, and dead blood cells. It assists in assimilating the fat vitamins and fat-soluble from digestive system and delivers them to body tissues. Furthermore, the interstitial spaces amongst cells eradicate the extra fluids and redundant substances from body. Automatic diagnosis of cancer metastases in lymph nodes has the prospective to increase calculation of prognoses for patients. Machine learning¬based classification methods offer provision for the decision¬making method in various regions of healthcare, involving screening, diagnosis, prognosis, and so on. This study introduces an Optimal Feed Forward Deep Neural Network for Lymph Disease Detection and Classification (OFFDNN-LDC) model. The presented OFFDNN-LDC model intends to apply the classification model to determine the presence of lymph diseases in medical data. For attaining this, the presented OFFDNN-LDC model exploits the FFDNN model as a classifier to assign effective class labels. Besides, the presented OFFDNN-LDC model executes root mean square propagation (RMSProp) optimizer to properly elect the hyperparameter values of the FFDNN model. A series of simulations are performed for demonstrating the improved outcome of the OFFDNN-LDC model. The experimental values referred that the OFFDNN-LDC model is superior to other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5689
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信