基于Kriging元模型的CMA-ES鲁棒逼近鲁棒优化方法

J. Kruisselbrink, M. Emmerich, A. Deutz, Thomas Bäck
{"title":"基于Kriging元模型的CMA-ES鲁棒逼近鲁棒优化方法","authors":"J. Kruisselbrink, M. Emmerich, A. Deutz, Thomas Bäck","doi":"10.1109/CEC.2010.5586235","DOIUrl":null,"url":null,"abstract":"This paper presents a study for using Kriging metamodeling in combination with Covariance Matrix Adaptation Evolution Strategies (CMA-ES) to find robust solutions. A general, archive based, framework is proposed for integrating Kriging within CMA-ES, including a method to utilize the covariance matrix of the CMA-ES in a straightforward way to improve the accuracy of the Kriging predictions without introducing much additional computational cost. Moreover, it adopts an elegant way to select appropriate archive points for building a local metamodel. The study shows that this Kriging metamodeling scheme for finding robust solutions outperforms common, straightforward approaches and is very useful when there is a limited budget of function evaluations. Though using the covariance matrix can improve the prediction quality, it has no significant effect on the overall quality of the optimization results.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"328 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A robust optimization approach using Kriging metamodels for robustness approximation in the CMA-ES\",\"authors\":\"J. Kruisselbrink, M. Emmerich, A. Deutz, Thomas Bäck\",\"doi\":\"10.1109/CEC.2010.5586235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study for using Kriging metamodeling in combination with Covariance Matrix Adaptation Evolution Strategies (CMA-ES) to find robust solutions. A general, archive based, framework is proposed for integrating Kriging within CMA-ES, including a method to utilize the covariance matrix of the CMA-ES in a straightforward way to improve the accuracy of the Kriging predictions without introducing much additional computational cost. Moreover, it adopts an elegant way to select appropriate archive points for building a local metamodel. The study shows that this Kriging metamodeling scheme for finding robust solutions outperforms common, straightforward approaches and is very useful when there is a limited budget of function evaluations. Though using the covariance matrix can improve the prediction quality, it has no significant effect on the overall quality of the optimization results.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"328 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文研究了将Kriging元模型与协方差矩阵自适应进化策略(CMA-ES)相结合来寻找鲁棒解的方法。提出了一个通用的、基于存档的框架,用于在CMA-ES中集成Kriging,包括一种直接利用CMA-ES的协方差矩阵的方法,以提高Kriging预测的准确性,而不引入太多额外的计算成本。此外,它采用了一种优雅的方式来选择合适的存档点来构建本地元模型。研究表明,这种用于寻找鲁棒解的Kriging元建模方案优于常见的直接方法,并且在函数评估的预算有限时非常有用。虽然使用协方差矩阵可以提高预测质量,但对优化结果的整体质量没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust optimization approach using Kriging metamodels for robustness approximation in the CMA-ES
This paper presents a study for using Kriging metamodeling in combination with Covariance Matrix Adaptation Evolution Strategies (CMA-ES) to find robust solutions. A general, archive based, framework is proposed for integrating Kriging within CMA-ES, including a method to utilize the covariance matrix of the CMA-ES in a straightforward way to improve the accuracy of the Kriging predictions without introducing much additional computational cost. Moreover, it adopts an elegant way to select appropriate archive points for building a local metamodel. The study shows that this Kriging metamodeling scheme for finding robust solutions outperforms common, straightforward approaches and is very useful when there is a limited budget of function evaluations. Though using the covariance matrix can improve the prediction quality, it has no significant effect on the overall quality of the optimization results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信