气候变化对城市雨水管理系统设计风暴及性能的影响——以加拿大中西部山地流域为例

Sadik Ahmed, I. Tsanis
{"title":"气候变化对城市雨水管理系统设计风暴及性能的影响——以加拿大中西部山地流域为例","authors":"Sadik Ahmed, I. Tsanis","doi":"10.4172/2157-7587.1000229","DOIUrl":null,"url":null,"abstract":"A number of future climate projections indicate a likelihood of increased magnitude and frequency of hydrological extremes for many regions around the world. The urban storm-water management infrastructures are designed to mitigate the effect of extreme hydrological events. Changes in extreme rainfall events will have a significant implication on the design of storm-water management infrastructures. This study assessed the potential impact of changed rainfall extreme on drainage systems in the West Central Mountain drainage area located in Southern Ontario, Canada. First, the design storms for the study area were calculated from observed rainfall data and the North American Regional Climate Change Assessment Program (NARCCAP) climate simulations based on SRES A2 Scenario. Frequency analysis was performed on the annual maximum time series data by using the best fitted distribution among twenty seven distributions. The Pearson chi-square test and Kolmogorov-Smirnov were used to test the goodness of fit of each distribution. The results show that L-moment Pareto distribution was selected the most often for data from six RCM+GCM pairs. Overall increase of storm depth in the future is highest when the distributions were identified by the Kolmogorov-Smirnov test. The design storm depths calculated from the observed and climate model simulated data were used as input into an existing PCSWMM model of the study area for flow simulation and hydraulic analysis for the storm-water management system, specifically storm sewer and detention pond. The results show an increase in design storm depths under projected climatic change scenarios that suggest an update of current standard for designing both the minor system and detention pond in the study area. The assessment results of storm water management infrastructures indicate that performance of the detention pond as well as the storm sewer network will deteriorate under future climate condition.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Climate Change Impact on Design Storm and Performance of Urban Storm-Water Management System - A Case Study on West Central Mountain Drainage Area in Canada\",\"authors\":\"Sadik Ahmed, I. Tsanis\",\"doi\":\"10.4172/2157-7587.1000229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of future climate projections indicate a likelihood of increased magnitude and frequency of hydrological extremes for many regions around the world. The urban storm-water management infrastructures are designed to mitigate the effect of extreme hydrological events. Changes in extreme rainfall events will have a significant implication on the design of storm-water management infrastructures. This study assessed the potential impact of changed rainfall extreme on drainage systems in the West Central Mountain drainage area located in Southern Ontario, Canada. First, the design storms for the study area were calculated from observed rainfall data and the North American Regional Climate Change Assessment Program (NARCCAP) climate simulations based on SRES A2 Scenario. Frequency analysis was performed on the annual maximum time series data by using the best fitted distribution among twenty seven distributions. The Pearson chi-square test and Kolmogorov-Smirnov were used to test the goodness of fit of each distribution. The results show that L-moment Pareto distribution was selected the most often for data from six RCM+GCM pairs. Overall increase of storm depth in the future is highest when the distributions were identified by the Kolmogorov-Smirnov test. The design storm depths calculated from the observed and climate model simulated data were used as input into an existing PCSWMM model of the study area for flow simulation and hydraulic analysis for the storm-water management system, specifically storm sewer and detention pond. The results show an increase in design storm depths under projected climatic change scenarios that suggest an update of current standard for designing both the minor system and detention pond in the study area. The assessment results of storm water management infrastructures indicate that performance of the detention pond as well as the storm sewer network will deteriorate under future climate condition.\",\"PeriodicalId\":17605,\"journal\":{\"name\":\"Journal of Waste Water Treatment and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Waste Water Treatment and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7587.1000229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Waste Water Treatment and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7587.1000229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

一些未来气候预测表明,世界上许多地区的水文极端事件的规模和频率可能会增加。城市雨水管理基础设施的设计是为了减轻极端水文事件的影响。极端降雨事件的变化将对雨水管理基础设施的设计产生重大影响。本研究评估了降雨极端变化对位于加拿大安大略省南部的中西部山区排水系统的潜在影响。首先,利用实测降水资料和基于SRES A2情景的北美区域气候变化评估计划(NARCCAP)气候模拟计算研究区设计风暴。利用27个分布中的最佳拟合分布对年最大时间序列数据进行频率分析。采用Pearson卡方检验和Kolmogorov-Smirnov检验各分布的拟合优度。结果表明,6对RCM+GCM数据最常选择l矩Pareto分布。当这些分布由Kolmogorov-Smirnov检验确定时,未来风暴深度的总体增长最大。根据观测数据和气候模式模拟数据计算的设计风暴深度被输入到研究区现有的PCSWMM模型中,用于对雨水管理系统(特别是雨水下水道和滞留池)进行流量模拟和水力分析。结果表明,在预测的气候变化情景下,设计风暴深度增加,这表明研究区域的小系统和蓄水池设计的现行标准需要更新。雨水管理基础设施的评价结果表明,在未来的气候条件下,蓄水池和雨水管网的性能将会恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Climate Change Impact on Design Storm and Performance of Urban Storm-Water Management System - A Case Study on West Central Mountain Drainage Area in Canada
A number of future climate projections indicate a likelihood of increased magnitude and frequency of hydrological extremes for many regions around the world. The urban storm-water management infrastructures are designed to mitigate the effect of extreme hydrological events. Changes in extreme rainfall events will have a significant implication on the design of storm-water management infrastructures. This study assessed the potential impact of changed rainfall extreme on drainage systems in the West Central Mountain drainage area located in Southern Ontario, Canada. First, the design storms for the study area were calculated from observed rainfall data and the North American Regional Climate Change Assessment Program (NARCCAP) climate simulations based on SRES A2 Scenario. Frequency analysis was performed on the annual maximum time series data by using the best fitted distribution among twenty seven distributions. The Pearson chi-square test and Kolmogorov-Smirnov were used to test the goodness of fit of each distribution. The results show that L-moment Pareto distribution was selected the most often for data from six RCM+GCM pairs. Overall increase of storm depth in the future is highest when the distributions were identified by the Kolmogorov-Smirnov test. The design storm depths calculated from the observed and climate model simulated data were used as input into an existing PCSWMM model of the study area for flow simulation and hydraulic analysis for the storm-water management system, specifically storm sewer and detention pond. The results show an increase in design storm depths under projected climatic change scenarios that suggest an update of current standard for designing both the minor system and detention pond in the study area. The assessment results of storm water management infrastructures indicate that performance of the detention pond as well as the storm sewer network will deteriorate under future climate condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信