弱MSO:自动机和表达模双相似

Facundo Carreiro, Alessandro Facchini, Y. Venema, F. Zanasi
{"title":"弱MSO:自动机和表达模双相似","authors":"Facundo Carreiro, Alessandro Facchini, Y. Venema, F. Zanasi","doi":"10.1145/2603088.2603101","DOIUrl":null,"url":null,"abstract":"We prove that the bisimulation-invariant fragment of weak monadic second-order logic (WMSO) is equivalent to the fragment of the modal μ-calculus where the application of the least fixpoint operator μp.φ is restricted to formulas φ that are continuous in p. Our proof is automata-theoretic in nature; in particular, we introduce a class of automata characterizing the expressive power of WMSO over tree models of arbitrary branching degree. The transition map of these automata is defined in terms of a logic FOE1∞ that is the extension of first-order logic with a generalized quantifier ∃∞, where ∃∞x.φ means that there are infinitely many objects satisfying φ. An important part of our work consists of a model-theoretic analysis of FOE1∞.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Weak MSO: automata and expressiveness modulo bisimilarity\",\"authors\":\"Facundo Carreiro, Alessandro Facchini, Y. Venema, F. Zanasi\",\"doi\":\"10.1145/2603088.2603101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the bisimulation-invariant fragment of weak monadic second-order logic (WMSO) is equivalent to the fragment of the modal μ-calculus where the application of the least fixpoint operator μp.φ is restricted to formulas φ that are continuous in p. Our proof is automata-theoretic in nature; in particular, we introduce a class of automata characterizing the expressive power of WMSO over tree models of arbitrary branching degree. The transition map of these automata is defined in terms of a logic FOE1∞ that is the extension of first-order logic with a generalized quantifier ∃∞, where ∃∞x.φ means that there are infinitely many objects satisfying φ. An important part of our work consists of a model-theoretic analysis of FOE1∞.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

证明了弱一元二阶逻辑(WMSO)的双模拟不变片段等价于模态μ微积分的片段,其中最小不动点算子μp的应用。φ被限制为在p中连续的公式φ。我们的证明本质上是自动机论的;特别地,我们引入了一类自动机来表征WMSO在任意分支度的树模型上的表达能力。这些自动机的转换映射是根据逻辑FOE1∞定义的,该逻辑是一阶逻辑的扩展,具有广义量词∃∞,其中∃∞x。φ表示有无限多个对象满足φ。我们工作的一个重要部分是对FOE1∞的模型理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak MSO: automata and expressiveness modulo bisimilarity
We prove that the bisimulation-invariant fragment of weak monadic second-order logic (WMSO) is equivalent to the fragment of the modal μ-calculus where the application of the least fixpoint operator μp.φ is restricted to formulas φ that are continuous in p. Our proof is automata-theoretic in nature; in particular, we introduce a class of automata characterizing the expressive power of WMSO over tree models of arbitrary branching degree. The transition map of these automata is defined in terms of a logic FOE1∞ that is the extension of first-order logic with a generalized quantifier ∃∞, where ∃∞x.φ means that there are infinitely many objects satisfying φ. An important part of our work consists of a model-theoretic analysis of FOE1∞.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信