飞行时间成像中的脉冲流模型

Adrien Besson, Dimitris Perdios, Y. Wiaux, J. Thiran
{"title":"飞行时间成像中的脉冲流模型","authors":"Adrien Besson, Dimitris Perdios, Y. Wiaux, J. Thiran","doi":"10.1109/ICASSP.2018.8461767","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of reconstructing raw signals from random projections in the context of time-of-flight imaging with an array of sensors. It presents a new signal model, coined as multi-channel pulse-stream model, which exploits pulse-stream models and accounts for additional structure induced by inter-sensor dependencies. We propose a sampling theorem and a reconstruction algorithm, based on ℓ -minimization, for signals belonging to such a model. We demonstrate the benefits of the proposed approach by means of numerical simulations and on a real non-destructive-evaluation application where the peak-signal-to-noise-ratio is increased by 3 dB compared to standard compressed-sensing strategies.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"3389-3393"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pulse-Stream Models in Time-of-Flight Imaging\",\"authors\":\"Adrien Besson, Dimitris Perdios, Y. Wiaux, J. Thiran\",\"doi\":\"10.1109/ICASSP.2018.8461767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of reconstructing raw signals from random projections in the context of time-of-flight imaging with an array of sensors. It presents a new signal model, coined as multi-channel pulse-stream model, which exploits pulse-stream models and accounts for additional structure induced by inter-sensor dependencies. We propose a sampling theorem and a reconstruction algorithm, based on ℓ -minimization, for signals belonging to such a model. We demonstrate the benefits of the proposed approach by means of numerical simulations and on a real non-destructive-evaluation application where the peak-signal-to-noise-ratio is increased by 3 dB compared to standard compressed-sensing strategies.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"3389-3393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一组传感器在飞行时间成像中从随机投影中重建原始信号的问题。它提出了一种新的信号模型,称为多通道脉冲流模型,该模型利用脉冲流模型并考虑了由传感器间依赖引起的附加结构。对于属于这种模型的信号,我们提出了一个采样定理和基于最小化的重构算法。我们通过数值模拟和真实的无损评估应用证明了所提出方法的优点,其中与标准压缩感知策略相比,峰值信噪比增加了3 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pulse-Stream Models in Time-of-Flight Imaging
This paper considers the problem of reconstructing raw signals from random projections in the context of time-of-flight imaging with an array of sensors. It presents a new signal model, coined as multi-channel pulse-stream model, which exploits pulse-stream models and accounts for additional structure induced by inter-sensor dependencies. We propose a sampling theorem and a reconstruction algorithm, based on ℓ -minimization, for signals belonging to such a model. We demonstrate the benefits of the proposed approach by means of numerical simulations and on a real non-destructive-evaluation application where the peak-signal-to-noise-ratio is increased by 3 dB compared to standard compressed-sensing strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信