使用大规模旅行数据估算旅行时间的简单基线

Hongjian Wang, Yu-Hsuan Kuo, Daniel Kifer, Z. Li
{"title":"使用大规模旅行数据估算旅行时间的简单基线","authors":"Hongjian Wang, Yu-Hsuan Kuo, Daniel Kifer, Z. Li","doi":"10.1145/2996913.2996943","DOIUrl":null,"url":null,"abstract":"The increased availability of large-scale trajectory data provides rich information for the study of urban dynamics. For example, New York City Taxi & Limousine Commission regularly releases source/destination information of taxi trips, where 173 million taxi trips released for Year 2013 [1]. Such a big dataset provides us potential new perspectives to address the traditional traffic problems. In this paper, we study the travel time estimation problem. Instead of following the traditional route-based travel time estimation, we propose to simply use a large amount of taxi trips without using the intermediate trajectory points to estimate the travel time between source and destination. Our experiments show very promising results. The proposed big data-driven approach significantly outperforms both state-of-the-art route-based method and online map services. Our study indicates that novel simple approaches could be empowered by the big data and these approaches could serve as new baselines for some traditional computational problems.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"A simple baseline for travel time estimation using large-scale trip data\",\"authors\":\"Hongjian Wang, Yu-Hsuan Kuo, Daniel Kifer, Z. Li\",\"doi\":\"10.1145/2996913.2996943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increased availability of large-scale trajectory data provides rich information for the study of urban dynamics. For example, New York City Taxi & Limousine Commission regularly releases source/destination information of taxi trips, where 173 million taxi trips released for Year 2013 [1]. Such a big dataset provides us potential new perspectives to address the traditional traffic problems. In this paper, we study the travel time estimation problem. Instead of following the traditional route-based travel time estimation, we propose to simply use a large amount of taxi trips without using the intermediate trajectory points to estimate the travel time between source and destination. Our experiments show very promising results. The proposed big data-driven approach significantly outperforms both state-of-the-art route-based method and online map services. Our study indicates that novel simple approaches could be empowered by the big data and these approaches could serve as new baselines for some traditional computational problems.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

摘要

大尺度轨迹数据的增加为城市动力学研究提供了丰富的信息。例如,纽约市出租车和豪华轿车委员会定期发布出租车出行的来源/目的地信息,其中2013年发布了1.73亿次出租车出行[1]。如此庞大的数据集为我们解决传统交通问题提供了潜在的新视角。本文主要研究了行车时间估计问题。与传统的基于路线的出行时间估计方法不同,我们提出不使用中间轨迹点来估计源目的地之间的出行时间,而是简单地使用大量的出租车行程。我们的实验显示出很有希望的结果。提出的大数据驱动方法明显优于最先进的基于路线的方法和在线地图服务。我们的研究表明,新的简单方法可以被大数据赋予力量,这些方法可以作为一些传统计算问题的新基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple baseline for travel time estimation using large-scale trip data
The increased availability of large-scale trajectory data provides rich information for the study of urban dynamics. For example, New York City Taxi & Limousine Commission regularly releases source/destination information of taxi trips, where 173 million taxi trips released for Year 2013 [1]. Such a big dataset provides us potential new perspectives to address the traditional traffic problems. In this paper, we study the travel time estimation problem. Instead of following the traditional route-based travel time estimation, we propose to simply use a large amount of taxi trips without using the intermediate trajectory points to estimate the travel time between source and destination. Our experiments show very promising results. The proposed big data-driven approach significantly outperforms both state-of-the-art route-based method and online map services. Our study indicates that novel simple approaches could be empowered by the big data and these approaches could serve as new baselines for some traditional computational problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信