{"title":"基于串并联排列结构的低频吸声超材料","authors":"Hongyu Zhuang, Hongyu Cui, Haoming Hu","doi":"10.1177/14613484231195277","DOIUrl":null,"url":null,"abstract":"Low-frequency noise has a long wavelength, decays very slowly, and is extremely penetrating. Traditional marine acoustic insulation materials have difficulty achieving effective control of this low-frequency noise. In this paper, a series-parallel arrangement structure of a low-frequency metamaterial is designed, which mainly comprises convoluted channels and Helmholtz cavities in series and a sandwich arrangement of multiple cells (as opposed to the traditional parallel arrangement). We use a numerical method to establish an acoustic-solid coupling model for the metamaterial, consider the influence of thermal and viscous losses on its sound absorption performance, and investigate the sound absorption characteristics and mechanisms of the single-cell and multicell structures. The metamaterial designed in this paper shows an average absorption coefficient of 0.97 in the range of 130–145 Hz. An experimental model was prepared by 3D printing, and the intended sound absorption effect was experimentally verified.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-frequency sound-absorbing metamaterial based on a series-parallel arrangement structure\",\"authors\":\"Hongyu Zhuang, Hongyu Cui, Haoming Hu\",\"doi\":\"10.1177/14613484231195277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-frequency noise has a long wavelength, decays very slowly, and is extremely penetrating. Traditional marine acoustic insulation materials have difficulty achieving effective control of this low-frequency noise. In this paper, a series-parallel arrangement structure of a low-frequency metamaterial is designed, which mainly comprises convoluted channels and Helmholtz cavities in series and a sandwich arrangement of multiple cells (as opposed to the traditional parallel arrangement). We use a numerical method to establish an acoustic-solid coupling model for the metamaterial, consider the influence of thermal and viscous losses on its sound absorption performance, and investigate the sound absorption characteristics and mechanisms of the single-cell and multicell structures. The metamaterial designed in this paper shows an average absorption coefficient of 0.97 in the range of 130–145 Hz. An experimental model was prepared by 3D printing, and the intended sound absorption effect was experimentally verified.\",\"PeriodicalId\":56067,\"journal\":{\"name\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14613484231195277\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231195277","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Low-frequency sound-absorbing metamaterial based on a series-parallel arrangement structure
Low-frequency noise has a long wavelength, decays very slowly, and is extremely penetrating. Traditional marine acoustic insulation materials have difficulty achieving effective control of this low-frequency noise. In this paper, a series-parallel arrangement structure of a low-frequency metamaterial is designed, which mainly comprises convoluted channels and Helmholtz cavities in series and a sandwich arrangement of multiple cells (as opposed to the traditional parallel arrangement). We use a numerical method to establish an acoustic-solid coupling model for the metamaterial, consider the influence of thermal and viscous losses on its sound absorption performance, and investigate the sound absorption characteristics and mechanisms of the single-cell and multicell structures. The metamaterial designed in this paper shows an average absorption coefficient of 0.97 in the range of 130–145 Hz. An experimental model was prepared by 3D printing, and the intended sound absorption effect was experimentally verified.
期刊介绍:
Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.