二元磷化物掺杂碳纤维作为PEM电解槽的电催化层

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cyril Bera, Magdalena Streckova
{"title":"二元磷化物掺杂碳纤维作为PEM电解槽的电催化层","authors":"Cyril Bera, Magdalena Streckova","doi":"10.4028/p-o8u8bx","DOIUrl":null,"url":null,"abstract":"Hydrogen evolution reactions (HER) are important in a variety of electrochemical devices, such as electrolysers and fuel cells. To reduce the reaction overpotential and reduce energy consumption, efficient, low-cost, and durable electrocatalysts must be developed. Needle-less electrospinning (NLE) technique was used to prepare the fibrous electrocatalyst. NLE is a user-friendly and adaptable technique for large-scale low-cost fiber production. NLE created transition metal phosphides carbon fibers (TMP CF). The precursor foam was folded between two Al2O3 ceramic plates. The heat treatment was carried out in a tube furnace at 1200 °C in an Ar atmosphere, followed by a reduction in an H2 atmosphere at 780 °C. The electrolyser's membrane electrode assembly can be immediately submerged in the final TMP CF in the form of plates. The created NiCoP catalytic plates could be directly used in electrolyser's membrane electrode assembly of PEM electrolysers. In a three-electrode system, the electrochemical activity of the produced electrocatalysts was evaluated using linear sweep voltammetry. The electrochemical activity of the produced electrocatalysts were evaluated using linear sweep voltammetry. The catalyst's stability and endurance in acidic and alkaline environments were investigated.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"214 1","pages":"97 - 102"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Fibers Doped by Binary Phosphides as an Electrocatalytic Layer for PEM Electrolysers\",\"authors\":\"Cyril Bera, Magdalena Streckova\",\"doi\":\"10.4028/p-o8u8bx\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen evolution reactions (HER) are important in a variety of electrochemical devices, such as electrolysers and fuel cells. To reduce the reaction overpotential and reduce energy consumption, efficient, low-cost, and durable electrocatalysts must be developed. Needle-less electrospinning (NLE) technique was used to prepare the fibrous electrocatalyst. NLE is a user-friendly and adaptable technique for large-scale low-cost fiber production. NLE created transition metal phosphides carbon fibers (TMP CF). The precursor foam was folded between two Al2O3 ceramic plates. The heat treatment was carried out in a tube furnace at 1200 °C in an Ar atmosphere, followed by a reduction in an H2 atmosphere at 780 °C. The electrolyser's membrane electrode assembly can be immediately submerged in the final TMP CF in the form of plates. The created NiCoP catalytic plates could be directly used in electrolyser's membrane electrode assembly of PEM electrolysers. In a three-electrode system, the electrochemical activity of the produced electrocatalysts was evaluated using linear sweep voltammetry. The electrochemical activity of the produced electrocatalysts were evaluated using linear sweep voltammetry. The catalyst's stability and endurance in acidic and alkaline environments were investigated.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"214 1\",\"pages\":\"97 - 102\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-o8u8bx\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-o8u8bx","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

析氢反应(HER)在电解槽和燃料电池等多种电化学装置中起着重要的作用。为了降低反应过电位,降低能耗,必须开发高效、低成本、耐用的电催化剂。采用无针静电纺丝(NLE)技术制备纤维状电催化剂。NLE是一种用户友好且适应性强的大规模低成本纤维生产技术。NLE创造了过渡金属磷化碳纤维(TMP CF)。前驱体泡沫被折叠在两个Al2O3陶瓷板之间。热处理在管式炉中进行,温度为1200℃,氩气中进行,然后在780℃的H2气氛中进行还原。电解槽的膜电极组件可以立即以板的形式淹没在最终的TMP CF中。所制备的NiCoP催化板可直接用于PEM电解槽的膜电极组件。在三电极体系中,用线性扫描伏安法评价了所制电催化剂的电化学活性。用线性扫描伏安法评价了所制电催化剂的电化学活性。考察了催化剂在酸性和碱性环境下的稳定性和耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon Fibers Doped by Binary Phosphides as an Electrocatalytic Layer for PEM Electrolysers
Hydrogen evolution reactions (HER) are important in a variety of electrochemical devices, such as electrolysers and fuel cells. To reduce the reaction overpotential and reduce energy consumption, efficient, low-cost, and durable electrocatalysts must be developed. Needle-less electrospinning (NLE) technique was used to prepare the fibrous electrocatalyst. NLE is a user-friendly and adaptable technique for large-scale low-cost fiber production. NLE created transition metal phosphides carbon fibers (TMP CF). The precursor foam was folded between two Al2O3 ceramic plates. The heat treatment was carried out in a tube furnace at 1200 °C in an Ar atmosphere, followed by a reduction in an H2 atmosphere at 780 °C. The electrolyser's membrane electrode assembly can be immediately submerged in the final TMP CF in the form of plates. The created NiCoP catalytic plates could be directly used in electrolyser's membrane electrode assembly of PEM electrolysers. In a three-electrode system, the electrochemical activity of the produced electrocatalysts was evaluated using linear sweep voltammetry. The electrochemical activity of the produced electrocatalysts were evaluated using linear sweep voltammetry. The catalyst's stability and endurance in acidic and alkaline environments were investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nano Research
Journal of Nano Research 工程技术-材料科学:综合
CiteScore
2.40
自引率
5.90%
发文量
55
审稿时长
4 months
期刊介绍: "Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results. "Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited. Authors retain the right to publish an extended and significantly updated version in another periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信