加权空间上非自治拉普拉斯格系统的前拉动力学

Xiaoying Han, P. Kloeden
{"title":"加权空间上非自治拉普拉斯格系统的前拉动力学","authors":"Xiaoying Han, P. Kloeden","doi":"10.3934/dcdss.2021143","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>A nonautonomous lattice system with discrete Laplacian operator is revisited in the weighted space of infinite sequences <inline-formula><tex-math id=\"M1\">\\begin{document}$ {{\\ell_{\\rho}^2}} $\\end{document}</tex-math></inline-formula>. First the existence of a pullback attractor in <inline-formula><tex-math id=\"M2\">\\begin{document}$ {{\\ell_{\\rho}^2}} $\\end{document}</tex-math></inline-formula> is established by utilizing the dense inclusion of <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\ell^2 \\subset {{\\ell_{\\rho}^2}} $\\end{document}</tex-math></inline-formula>. Moreover, the pullback attractor is shown to consist of a singleton trajectory when the lattice system is uniformly strictly contracting. Then forward dynamics is investigated in terms of the existence of a nonempty compact forward omega limit set. A general class of weights for the sequence space are adopted, instead of particular types of weights often used in the literature. The analysis presented in this work is more direct compare with previous studies.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pullback and forward dynamics of nonautonomous Laplacian lattice systems on weighted spaces\",\"authors\":\"Xiaoying Han, P. Kloeden\",\"doi\":\"10.3934/dcdss.2021143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>A nonautonomous lattice system with discrete Laplacian operator is revisited in the weighted space of infinite sequences <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ {{\\\\ell_{\\\\rho}^2}} $\\\\end{document}</tex-math></inline-formula>. First the existence of a pullback attractor in <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ {{\\\\ell_{\\\\rho}^2}} $\\\\end{document}</tex-math></inline-formula> is established by utilizing the dense inclusion of <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\ell^2 \\\\subset {{\\\\ell_{\\\\rho}^2}} $\\\\end{document}</tex-math></inline-formula>. Moreover, the pullback attractor is shown to consist of a singleton trajectory when the lattice system is uniformly strictly contracting. Then forward dynamics is investigated in terms of the existence of a nonempty compact forward omega limit set. A general class of weights for the sequence space are adopted, instead of particular types of weights often used in the literature. The analysis presented in this work is more direct compare with previous studies.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2021143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2021143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

A nonautonomous lattice system with discrete Laplacian operator is revisited in the weighted space of infinite sequences \begin{document}$ {{\ell_{\rho}^2}} $\end{document}. First the existence of a pullback attractor in \begin{document}$ {{\ell_{\rho}^2}} $\end{document} is established by utilizing the dense inclusion of \begin{document}$ \ell^2 \subset {{\ell_{\rho}^2}} $\end{document}. Moreover, the pullback attractor is shown to consist of a singleton trajectory when the lattice system is uniformly strictly contracting. Then forward dynamics is investigated in terms of the existence of a nonempty compact forward omega limit set. A general class of weights for the sequence space are adopted, instead of particular types of weights often used in the literature. The analysis presented in this work is more direct compare with previous studies.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pullback and forward dynamics of nonautonomous Laplacian lattice systems on weighted spaces

A nonautonomous lattice system with discrete Laplacian operator is revisited in the weighted space of infinite sequences \begin{document}$ {{\ell_{\rho}^2}} $\end{document}. First the existence of a pullback attractor in \begin{document}$ {{\ell_{\rho}^2}} $\end{document} is established by utilizing the dense inclusion of \begin{document}$ \ell^2 \subset {{\ell_{\rho}^2}} $\end{document}. Moreover, the pullback attractor is shown to consist of a singleton trajectory when the lattice system is uniformly strictly contracting. Then forward dynamics is investigated in terms of the existence of a nonempty compact forward omega limit set. A general class of weights for the sequence space are adopted, instead of particular types of weights often used in the literature. The analysis presented in this work is more direct compare with previous studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信