鸡骨灰和石墨增强铝6061搅拌铸造摩擦磨损性能研究

Q3 Engineering
T. Nithyanandhan, P. Sivaraman, K. Manickaraj, N. Mohan Raj, M. S. Pragash, A. Tharun
{"title":"鸡骨灰和石墨增强铝6061搅拌铸造摩擦磨损性能研究","authors":"T. Nithyanandhan, P. Sivaraman, K. Manickaraj, N. Mohan Raj, M. S. Pragash, A. Tharun","doi":"10.4273/ijvss.14.7.04","DOIUrl":null,"url":null,"abstract":"Blending or supplementing metals with cutting-edge Metal Matrix Composites (MMCs) endeavours to improve the safety, reliability weight and productivity. A hybrid MMC was produced for the chamber liner of cutting-edge diesel motors. Dry sliding wear testing equipment, employing a pin-on-disc wear tester, is used to examine the wear properties of casted hybrid metal matrix composites. The examination shows that the wear opposition of Al-6061 is expanded while adding the chicken bone ash and graphite as support content. Within the current work, effort has been made to survey the tribological properties of aluminium as-projected combination test for Al amalgam and unadulterated aluminium. The operational boundaries were a typical load and sliding velocity of the pin concerning rotating disk at temperature. The medium utilized was dry and wet greasing. The amount of mileage has been decreased altogether in aluminium alloy similar to unadulterated aluminium. Dry condition testing showed huge loads of noise and a similarly more measure of mileage for both aluminium and aluminium alloy. The coefficient of contact for aluminium alloy in wet conditions was roughly steady up to the applied load and then diminished with additional utilization of load while the coefficient of friction for unadulterated aluminium was rising persistently with the load. Evaluation of the corrosion conduct of the aluminium MMC is achieved by the usage of the salt spray method or immersion test and the results are considered.","PeriodicalId":14391,"journal":{"name":"International Journal of Vehicle Structures and Systems","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tribological Behaviour of Aluminium 6061 Reinforced with Graphite and Chicken Bone Ash by using Stir Casting\",\"authors\":\"T. Nithyanandhan, P. Sivaraman, K. Manickaraj, N. Mohan Raj, M. S. Pragash, A. Tharun\",\"doi\":\"10.4273/ijvss.14.7.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blending or supplementing metals with cutting-edge Metal Matrix Composites (MMCs) endeavours to improve the safety, reliability weight and productivity. A hybrid MMC was produced for the chamber liner of cutting-edge diesel motors. Dry sliding wear testing equipment, employing a pin-on-disc wear tester, is used to examine the wear properties of casted hybrid metal matrix composites. The examination shows that the wear opposition of Al-6061 is expanded while adding the chicken bone ash and graphite as support content. Within the current work, effort has been made to survey the tribological properties of aluminium as-projected combination test for Al amalgam and unadulterated aluminium. The operational boundaries were a typical load and sliding velocity of the pin concerning rotating disk at temperature. The medium utilized was dry and wet greasing. The amount of mileage has been decreased altogether in aluminium alloy similar to unadulterated aluminium. Dry condition testing showed huge loads of noise and a similarly more measure of mileage for both aluminium and aluminium alloy. The coefficient of contact for aluminium alloy in wet conditions was roughly steady up to the applied load and then diminished with additional utilization of load while the coefficient of friction for unadulterated aluminium was rising persistently with the load. Evaluation of the corrosion conduct of the aluminium MMC is achieved by the usage of the salt spray method or immersion test and the results are considered.\",\"PeriodicalId\":14391,\"journal\":{\"name\":\"International Journal of Vehicle Structures and Systems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Structures and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4273/ijvss.14.7.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Structures and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4273/ijvss.14.7.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

与先进的金属基复合材料(mmc)混合或补充金属,努力提高安全性,可靠性,重量和生产力。为尖端柴油发动机的腔室衬垫生产了一种混合MMC。采用针盘式磨损试验机,采用干滑动磨损试验装置对铸造杂化金属基复合材料的磨损性能进行了研究。试验表明,加入鸡骨灰和石墨作为支撑物,Al-6061的抗磨损性得到了扩大。在目前的工作中,已经对铝的摩擦学性能进行了研究,并对铝汞合金和未掺杂铝进行了预测组合试验。工作边界是典型的载荷和销在温度下对旋转盘的滑动速度。所使用的介质有干润滑脂和湿润滑脂。与未掺假铝类似的铝合金的行驶里程已经完全减少。干工况测试显示,铝和铝合金的噪音负荷很大,行驶里程也同样更长。湿态铝合金的接触系数在施加载荷之前基本稳定,然后随着载荷的增加而减小,而纯铝的摩擦系数则随着载荷的增加而持续上升。采用盐雾法或浸泡试验对铝MMC的腐蚀性能进行了评价,并对评价结果进行了考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tribological Behaviour of Aluminium 6061 Reinforced with Graphite and Chicken Bone Ash by using Stir Casting
Blending or supplementing metals with cutting-edge Metal Matrix Composites (MMCs) endeavours to improve the safety, reliability weight and productivity. A hybrid MMC was produced for the chamber liner of cutting-edge diesel motors. Dry sliding wear testing equipment, employing a pin-on-disc wear tester, is used to examine the wear properties of casted hybrid metal matrix composites. The examination shows that the wear opposition of Al-6061 is expanded while adding the chicken bone ash and graphite as support content. Within the current work, effort has been made to survey the tribological properties of aluminium as-projected combination test for Al amalgam and unadulterated aluminium. The operational boundaries were a typical load and sliding velocity of the pin concerning rotating disk at temperature. The medium utilized was dry and wet greasing. The amount of mileage has been decreased altogether in aluminium alloy similar to unadulterated aluminium. Dry condition testing showed huge loads of noise and a similarly more measure of mileage for both aluminium and aluminium alloy. The coefficient of contact for aluminium alloy in wet conditions was roughly steady up to the applied load and then diminished with additional utilization of load while the coefficient of friction for unadulterated aluminium was rising persistently with the load. Evaluation of the corrosion conduct of the aluminium MMC is achieved by the usage of the salt spray method or immersion test and the results are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Structures and Systems
International Journal of Vehicle Structures and Systems Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
78
期刊介绍: The International Journal of Vehicle Structures and Systems (IJVSS) is a quarterly journal and is published by MechAero Foundation for Technical Research and Education Excellence (MAFTREE), based in Chennai, India. MAFTREE is engaged in promoting the advancement of technical research and education in the field of mechanical, aerospace, automotive and its related branches of engineering, science, and technology. IJVSS disseminates high quality original research and review papers, case studies, technical notes and book reviews. All published papers in this journal will have undergone rigorous peer review. IJVSS was founded in 2009. IJVSS is available in Print (ISSN 0975-3060) and Online (ISSN 0975-3540) versions. The prime focus of the IJVSS is given to the subjects of modelling, analysis, design, simulation, optimization and testing of structures and systems of the following: 1. Automotive vehicle including scooter, auto, car, motor sport and racing vehicles, 2. Truck, trailer and heavy vehicles for road transport, 3. Rail, bus, tram, emerging transit and hybrid vehicle, 4. Terrain vehicle, armoured vehicle, construction vehicle and Unmanned Ground Vehicle, 5. Aircraft, launch vehicle, missile, airship, spacecraft, space exploration vehicle, 6. Unmanned Aerial Vehicle, Micro Aerial Vehicle, 7. Marine vehicle, ship and yachts and under water vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信