探讨异常处理方法调用结构的缺陷预测模型

Puntitra Sawadpong
{"title":"探讨异常处理方法调用结构的缺陷预测模型","authors":"Puntitra Sawadpong","doi":"10.1145/2638404.2638513","DOIUrl":null,"url":null,"abstract":"The ability to predict where faults are likely to arise in the source code can help guide test plans, reduce effort and cost, narrow the test space, and improve software quality. Our preliminary results show that exception handling code can be more risky than normal code. Therefore, in order to support more efficient testing of exception handling code, this extended abstract proposes a framework to predict faults from annotated exception handling method call structures. This framework will generate annotated exception call graphs of the whole system and calculate property-based software engineering measurement values. The framework will then predict the high risk area of the system by applying statistical modeling techniques to perform fault prediction.","PeriodicalId":91384,"journal":{"name":"Proceedings of the 2014 ACM Southeast Regional Conference","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward a defect prediction model of exception handling method call structures\",\"authors\":\"Puntitra Sawadpong\",\"doi\":\"10.1145/2638404.2638513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to predict where faults are likely to arise in the source code can help guide test plans, reduce effort and cost, narrow the test space, and improve software quality. Our preliminary results show that exception handling code can be more risky than normal code. Therefore, in order to support more efficient testing of exception handling code, this extended abstract proposes a framework to predict faults from annotated exception handling method call structures. This framework will generate annotated exception call graphs of the whole system and calculate property-based software engineering measurement values. The framework will then predict the high risk area of the system by applying statistical modeling techniques to perform fault prediction.\",\"PeriodicalId\":91384,\"journal\":{\"name\":\"Proceedings of the 2014 ACM Southeast Regional Conference\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM Southeast Regional Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2638404.2638513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM Southeast Regional Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638404.2638513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

预测源代码中哪里可能出现错误的能力可以帮助指导测试计划,减少工作量和成本,缩小测试空间,并提高软件质量。我们的初步结果表明,异常处理代码可能比正常代码风险更大。因此,为了支持对异常处理代码更有效的测试,该扩展抽象提出了一个框架,可以从带注释的异常处理方法调用结构中预测错误。该框架将生成整个系统的带注释的异常调用图,并计算基于属性的软件工程度量值。然后,该框架将通过应用统计建模技术进行故障预测来预测系统的高风险区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a defect prediction model of exception handling method call structures
The ability to predict where faults are likely to arise in the source code can help guide test plans, reduce effort and cost, narrow the test space, and improve software quality. Our preliminary results show that exception handling code can be more risky than normal code. Therefore, in order to support more efficient testing of exception handling code, this extended abstract proposes a framework to predict faults from annotated exception handling method call structures. This framework will generate annotated exception call graphs of the whole system and calculate property-based software engineering measurement values. The framework will then predict the high risk area of the system by applying statistical modeling techniques to perform fault prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信