异体反应中基质弹性对MNC表型和巨噬细胞分化的调节

J. Fang, Zhi Yang, Wei Hu, Ba X Hoang, B. Han
{"title":"异体反应中基质弹性对MNC表型和巨噬细胞分化的调节","authors":"J. Fang, Zhi Yang, Wei Hu, Ba X Hoang, B. Han","doi":"10.2139/ssrn.3674114","DOIUrl":null,"url":null,"abstract":"Biomaterial-induced multinucleated cells (MNC) have been observed within the material implantation sites, but their subtypes and roles in tissue repair and wound healing remain unclear. Herein, we present using an elastic gradient of the gelatin-based 3D matrix (Col-Tgel), as compared to cytokine, to induce MNCs in the <i>in vitro</i> and <i>in vivo</i> models. The 3D embedded Raw264.7 cells and rat bone marrow-derived monocytes (BMDMs), with or without cytokines such as IL-4 and RANKL, were characterized in terms of their MNCs morphologies and subtypes by <i>in situ</i> immunocytochemistry and flow cytometry. The macrophage polarization or osteoclasts differentiation markers such as NO production, arginase, and tartrate-resistant acid phosphatase activities assays were conducted to compare matrix specific effects. 3D matrix-induced MNCs expressed the same phenotypic heterogeneity as the IL-4 and RANK treated ones. The high elastic matrix (1006.48±92.29 Pa) induced high proinflammatory and osteoclast-like MNCs populations, but pro-, anti-inflammatory, and osteoclast-like macrophage differentiation and gene expression were highly active in the low elastic matrix (38.61±7.56 Pa). The matrix elasticity also altered the effect of IL-4 and RANKL on macrophage-derived MSC polarization. In the <i>in vivo</i> subcutaneous implantation model, higher CD86+ and RANK+ MNCs populations displayed in the medium to high elastic matrices while relatively high CD206+ MNCs population presented in the low elastic matrix. Results suggested that the matrix elasticity modulated macrophage differentiation and MNCs phenotype. The low elastic matrix may favor anti-inflammatory MNCs and macrophage differentiation for subcutaneous implantation.","PeriodicalId":11894,"journal":{"name":"EngRN: Biomaterials (Topic)","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of MNC Phenotype and Macrophage Differentiation by the Matrix Elasticity in the Foreign Body Reaction\",\"authors\":\"J. Fang, Zhi Yang, Wei Hu, Ba X Hoang, B. Han\",\"doi\":\"10.2139/ssrn.3674114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomaterial-induced multinucleated cells (MNC) have been observed within the material implantation sites, but their subtypes and roles in tissue repair and wound healing remain unclear. Herein, we present using an elastic gradient of the gelatin-based 3D matrix (Col-Tgel), as compared to cytokine, to induce MNCs in the <i>in vitro</i> and <i>in vivo</i> models. The 3D embedded Raw264.7 cells and rat bone marrow-derived monocytes (BMDMs), with or without cytokines such as IL-4 and RANKL, were characterized in terms of their MNCs morphologies and subtypes by <i>in situ</i> immunocytochemistry and flow cytometry. The macrophage polarization or osteoclasts differentiation markers such as NO production, arginase, and tartrate-resistant acid phosphatase activities assays were conducted to compare matrix specific effects. 3D matrix-induced MNCs expressed the same phenotypic heterogeneity as the IL-4 and RANK treated ones. The high elastic matrix (1006.48±92.29 Pa) induced high proinflammatory and osteoclast-like MNCs populations, but pro-, anti-inflammatory, and osteoclast-like macrophage differentiation and gene expression were highly active in the low elastic matrix (38.61±7.56 Pa). The matrix elasticity also altered the effect of IL-4 and RANKL on macrophage-derived MSC polarization. In the <i>in vivo</i> subcutaneous implantation model, higher CD86+ and RANK+ MNCs populations displayed in the medium to high elastic matrices while relatively high CD206+ MNCs population presented in the low elastic matrix. Results suggested that the matrix elasticity modulated macrophage differentiation and MNCs phenotype. The low elastic matrix may favor anti-inflammatory MNCs and macrophage differentiation for subcutaneous implantation.\",\"PeriodicalId\":11894,\"journal\":{\"name\":\"EngRN: Biomaterials (Topic)\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Biomaterials (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3674114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Biomaterials (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3674114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物材料诱导的多核细胞(MNC)已在材料植入部位观察到,但其亚型及其在组织修复和伤口愈合中的作用尚不清楚。在此,我们提出使用基于明胶的三维基质(Col-Tgel)的弹性梯度,与细胞因子相比,在体外和体内模型中诱导跨国公司。采用原位免疫细胞化学和流式细胞术对3D包埋的Raw264.7细胞和大鼠骨髓源性单核细胞(bmdm)进行形态学和亚型的表征,无论是否含有IL-4和RANKL等细胞因子。通过巨噬细胞极化或破骨细胞分化标记物,如NO生成、精氨酸酶和抗酒石酸酸性磷酸酶活性测定,比较基质特异性效应。3D基质诱导的MNCs与IL-4和RANK处理的MNCs表达相同的表型异质性。高弹性基质(1006.48±92.29 Pa)诱导高促炎和破骨细胞样巨噬细胞群体,而低弹性基质(38.61±7.56 Pa)诱导促炎、抗炎和破骨细胞样巨噬细胞分化和基因表达高度活跃。基质弹性也改变了IL-4和RANKL对巨噬细胞源性MSC极化的影响。在体内皮下植入模型中,中高弹性基质中CD86+和RANK+ MNCs数量较多,而低弹性基质中CD206+ MNCs数量较多。结果表明,基质弹性调节巨噬细胞的分化和mnc表型。低弹性基质可能有利于抗炎MNCs和巨噬细胞分化进行皮下植入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation of MNC Phenotype and Macrophage Differentiation by the Matrix Elasticity in the Foreign Body Reaction
Biomaterial-induced multinucleated cells (MNC) have been observed within the material implantation sites, but their subtypes and roles in tissue repair and wound healing remain unclear. Herein, we present using an elastic gradient of the gelatin-based 3D matrix (Col-Tgel), as compared to cytokine, to induce MNCs in the in vitro and in vivo models. The 3D embedded Raw264.7 cells and rat bone marrow-derived monocytes (BMDMs), with or without cytokines such as IL-4 and RANKL, were characterized in terms of their MNCs morphologies and subtypes by in situ immunocytochemistry and flow cytometry. The macrophage polarization or osteoclasts differentiation markers such as NO production, arginase, and tartrate-resistant acid phosphatase activities assays were conducted to compare matrix specific effects. 3D matrix-induced MNCs expressed the same phenotypic heterogeneity as the IL-4 and RANK treated ones. The high elastic matrix (1006.48±92.29 Pa) induced high proinflammatory and osteoclast-like MNCs populations, but pro-, anti-inflammatory, and osteoclast-like macrophage differentiation and gene expression were highly active in the low elastic matrix (38.61±7.56 Pa). The matrix elasticity also altered the effect of IL-4 and RANKL on macrophage-derived MSC polarization. In the in vivo subcutaneous implantation model, higher CD86+ and RANK+ MNCs populations displayed in the medium to high elastic matrices while relatively high CD206+ MNCs population presented in the low elastic matrix. Results suggested that the matrix elasticity modulated macrophage differentiation and MNCs phenotype. The low elastic matrix may favor anti-inflammatory MNCs and macrophage differentiation for subcutaneous implantation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信