{"title":"具有控制屏障功能的无人潜航器目标跟踪避碰","authors":"Z. Deng, M. T. Zaman, Zhenzhong Chu","doi":"10.3723/ut.37.003","DOIUrl":null,"url":null,"abstract":"Unmanned underwater vehicles (UUVs) move in dynamic environments and need to avoid other non-cooperative obstacles while executing a task, such as tracking a target or a special trajectory. It is a challenge to avoid collisions with moving obstacles in the tracking process. The present\n paper describes the implementation of horizonplane adaptive cruise control, which follows a given desired trajectory using control Lyapunov functions while satisfying constraints specified by a control barrier function to avoid collision with obstacles. The Lyapunov function is treated as\n a soft constraint, and the barrier function as hard constraint for the UUV; both are satisfied simultaneously using quadratic programming. Finally, the present paper describes a simulation of avoiding moving obstacles while tracking a target, with the results showing this as effective and\n feasible.","PeriodicalId":44271,"journal":{"name":"UNDERWATER TECHNOLOGY","volume":"18 1","pages":"3-11"},"PeriodicalIF":0.4000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Collision avoidance with control barrier function for target tracking of an unmanned underwater vehicle\",\"authors\":\"Z. Deng, M. T. Zaman, Zhenzhong Chu\",\"doi\":\"10.3723/ut.37.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned underwater vehicles (UUVs) move in dynamic environments and need to avoid other non-cooperative obstacles while executing a task, such as tracking a target or a special trajectory. It is a challenge to avoid collisions with moving obstacles in the tracking process. The present\\n paper describes the implementation of horizonplane adaptive cruise control, which follows a given desired trajectory using control Lyapunov functions while satisfying constraints specified by a control barrier function to avoid collision with obstacles. The Lyapunov function is treated as\\n a soft constraint, and the barrier function as hard constraint for the UUV; both are satisfied simultaneously using quadratic programming. Finally, the present paper describes a simulation of avoiding moving obstacles while tracking a target, with the results showing this as effective and\\n feasible.\",\"PeriodicalId\":44271,\"journal\":{\"name\":\"UNDERWATER TECHNOLOGY\",\"volume\":\"18 1\",\"pages\":\"3-11\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UNDERWATER TECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3723/ut.37.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNDERWATER TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3723/ut.37.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Collision avoidance with control barrier function for target tracking of an unmanned underwater vehicle
Unmanned underwater vehicles (UUVs) move in dynamic environments and need to avoid other non-cooperative obstacles while executing a task, such as tracking a target or a special trajectory. It is a challenge to avoid collisions with moving obstacles in the tracking process. The present
paper describes the implementation of horizonplane adaptive cruise control, which follows a given desired trajectory using control Lyapunov functions while satisfying constraints specified by a control barrier function to avoid collision with obstacles. The Lyapunov function is treated as
a soft constraint, and the barrier function as hard constraint for the UUV; both are satisfied simultaneously using quadratic programming. Finally, the present paper describes a simulation of avoiding moving obstacles while tracking a target, with the results showing this as effective and
feasible.