{"title":"基于二进制整数十进制的浮点加法器的硬件设计","authors":"C. Tsen, S. González-Navarro, M. Schulte","doi":"10.1109/ICCD.2007.4601915","DOIUrl":null,"url":null,"abstract":"Because of the growing importance of decimal floating-point (DFP) arithmetic, specifications for it are included in the IEEE Draft Standard for Floating-point Arithmetic (IEEE P754). In this paper, we present a novel algorithm and hardware design for a DFP adder. The adder performs addition and subtraction on 64-bit operands that use the IEEE P754 binary encoding of DFP numbers, widely known as the binary integer decimal (BID) encoding. The BID adder uses a novel hardware component for decimal digit counting and an enhanced version of a previously published BID rounding unit. By adding more sophisticated control, operations are performed with variable latency to optimize for common cases. We show that a BID-based DFP adder design can be achieved with a modest area increase compared to a single 2-stage pipelined 64-bit fixed-point multiplier. Over 70% of the BID adderpsilas area is due the 64-bit fixed-point multiplier, which can be shared with a binary floating-point multiplier and hardware for other DFP operations. To our knowledge, this is the first hardware design for adding and subtracting IEEE P754 BID-encoded DFP numbers.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"18 1","pages":"288-295"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Hardware design of a Binary Integer Decimal-based floating-point adder\",\"authors\":\"C. Tsen, S. González-Navarro, M. Schulte\",\"doi\":\"10.1109/ICCD.2007.4601915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the growing importance of decimal floating-point (DFP) arithmetic, specifications for it are included in the IEEE Draft Standard for Floating-point Arithmetic (IEEE P754). In this paper, we present a novel algorithm and hardware design for a DFP adder. The adder performs addition and subtraction on 64-bit operands that use the IEEE P754 binary encoding of DFP numbers, widely known as the binary integer decimal (BID) encoding. The BID adder uses a novel hardware component for decimal digit counting and an enhanced version of a previously published BID rounding unit. By adding more sophisticated control, operations are performed with variable latency to optimize for common cases. We show that a BID-based DFP adder design can be achieved with a modest area increase compared to a single 2-stage pipelined 64-bit fixed-point multiplier. Over 70% of the BID adderpsilas area is due the 64-bit fixed-point multiplier, which can be shared with a binary floating-point multiplier and hardware for other DFP operations. To our knowledge, this is the first hardware design for adding and subtracting IEEE P754 BID-encoded DFP numbers.\",\"PeriodicalId\":6306,\"journal\":{\"name\":\"2007 25th International Conference on Computer Design\",\"volume\":\"18 1\",\"pages\":\"288-295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 25th International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2007.4601915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware design of a Binary Integer Decimal-based floating-point adder
Because of the growing importance of decimal floating-point (DFP) arithmetic, specifications for it are included in the IEEE Draft Standard for Floating-point Arithmetic (IEEE P754). In this paper, we present a novel algorithm and hardware design for a DFP adder. The adder performs addition and subtraction on 64-bit operands that use the IEEE P754 binary encoding of DFP numbers, widely known as the binary integer decimal (BID) encoding. The BID adder uses a novel hardware component for decimal digit counting and an enhanced version of a previously published BID rounding unit. By adding more sophisticated control, operations are performed with variable latency to optimize for common cases. We show that a BID-based DFP adder design can be achieved with a modest area increase compared to a single 2-stage pipelined 64-bit fixed-point multiplier. Over 70% of the BID adderpsilas area is due the 64-bit fixed-point multiplier, which can be shared with a binary floating-point multiplier and hardware for other DFP operations. To our knowledge, this is the first hardware design for adding and subtracting IEEE P754 BID-encoded DFP numbers.