{"title":"3-多面体上的哈密顿电路","authors":"David Barnette , Ernest Jucovič","doi":"10.1016/S0021-9800(70)80054-0","DOIUrl":null,"url":null,"abstract":"<div><p>The smallest number of vertices, edges, or faces of any 3-polytope with no Hamiltonian circuit is determined. Similar results are found for simplicial polytopes with no Hamiltonian circuit.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 1","pages":"Pages 54-59"},"PeriodicalIF":0.0000,"publicationDate":"1970-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80054-0","citationCount":"24","resultStr":"{\"title\":\"Hamiltonian circuits on 3-polytopes\",\"authors\":\"David Barnette , Ernest Jucovič\",\"doi\":\"10.1016/S0021-9800(70)80054-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The smallest number of vertices, edges, or faces of any 3-polytope with no Hamiltonian circuit is determined. Similar results are found for simplicial polytopes with no Hamiltonian circuit.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 1\",\"pages\":\"Pages 54-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80054-0\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The smallest number of vertices, edges, or faces of any 3-polytope with no Hamiltonian circuit is determined. Similar results are found for simplicial polytopes with no Hamiltonian circuit.