前馈源编码:高斯源

S. Pradhan
{"title":"前馈源编码:高斯源","authors":"S. Pradhan","doi":"10.1109/ISIT.2004.1365249","DOIUrl":null,"url":null,"abstract":"This paper describes the source coding of the information signals with feedforward Gaussian sources. A stationary memoryless Gaussian source with zero-mean and variance, and with mean squared error as the distortion measure, gives a deterministic scheme that achieves the optimal rate-distortion bound using simple uniform scalar quantizers. To reconstruct source codes, the decoder uses the optimal Shannon rate-distortion function and achieves channel coding with feedback.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":"19 1","pages":"212"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Source coding with feedforward: Gaussian sources\",\"authors\":\"S. Pradhan\",\"doi\":\"10.1109/ISIT.2004.1365249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the source coding of the information signals with feedforward Gaussian sources. A stationary memoryless Gaussian source with zero-mean and variance, and with mean squared error as the distortion measure, gives a deterministic scheme that achieves the optimal rate-distortion bound using simple uniform scalar quantizers. To reconstruct source codes, the decoder uses the optimal Shannon rate-distortion function and achieves channel coding with feedback.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":\"19 1\",\"pages\":\"212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了具有前馈高斯信号源的信息信号的源编码。一个均值和方差均为零的平稳无记忆高斯源,以均方误差作为失真度量,给出了一种确定性方案,该方案使用简单的均匀标量量化器实现了最优的速率-失真界。为了重构源代码,解码器采用最优香农率失真函数,实现带反馈的信道编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Source coding with feedforward: Gaussian sources
This paper describes the source coding of the information signals with feedforward Gaussian sources. A stationary memoryless Gaussian source with zero-mean and variance, and with mean squared error as the distortion measure, gives a deterministic scheme that achieves the optimal rate-distortion bound using simple uniform scalar quantizers. To reconstruct source codes, the decoder uses the optimal Shannon rate-distortion function and achieves channel coding with feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信