{"title":"生物流动改进剂的潜力评价及其对尼日利亚含蜡原油的影响","authors":"A. Fadairo, T. Ogunkunle, A. Oladepo, A. Adesina","doi":"10.2118/198798-MS","DOIUrl":null,"url":null,"abstract":"\n A root cause of many oil industry production and flow problem is paraffin wax especially in cold and deep offshore fields which are at low temperatures. About 82 – 89% of the hydrocarbon produced in the world suffers when wax precipitates out and solidifies in the pore spaces and channels of flow, around the wellbore, in the production wells or tubing, perforations, pump strings, and rods, and the whole oil transport flow-lines systems. The flow capacity of waxy crude can be quantified and evaluated using the means of pour point measurement. However, the description of this property during the flow of waxy crude is insufficient because the waxy crude rheological properties depend on the viscosity history. Using gelation theory, viscosity – temperature data can be analyzed and used to characterize the temperature behavior of waxy crude as such crude has the tendency to gel at low temperature. This paper evaluates Nigerian Waxy Crude Oil using biodiesel based material as an additive. Laboratory measurements on rheology were carried out on the sample at low temperatures condition. The obtained data of shear rate and shear stress plotted. The dose of biodiesel derived additive in neat waxy crude oil was varied between 0.1 to 0.5 v/v at the operating low temperature. The experimental investigations furnish that there is significant decrease in rheological properties with the decrease in pour point and temperature upon the addition of biodiesel derived additive hence, significantly enhance the flow of waxy crude in a flow system.","PeriodicalId":11110,"journal":{"name":"Day 2 Tue, August 06, 2019","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Potential of Bio-Derived Flow Improver and Its Effect on Nigeria Waxy Crude\",\"authors\":\"A. Fadairo, T. Ogunkunle, A. Oladepo, A. Adesina\",\"doi\":\"10.2118/198798-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A root cause of many oil industry production and flow problem is paraffin wax especially in cold and deep offshore fields which are at low temperatures. About 82 – 89% of the hydrocarbon produced in the world suffers when wax precipitates out and solidifies in the pore spaces and channels of flow, around the wellbore, in the production wells or tubing, perforations, pump strings, and rods, and the whole oil transport flow-lines systems. The flow capacity of waxy crude can be quantified and evaluated using the means of pour point measurement. However, the description of this property during the flow of waxy crude is insufficient because the waxy crude rheological properties depend on the viscosity history. Using gelation theory, viscosity – temperature data can be analyzed and used to characterize the temperature behavior of waxy crude as such crude has the tendency to gel at low temperature. This paper evaluates Nigerian Waxy Crude Oil using biodiesel based material as an additive. Laboratory measurements on rheology were carried out on the sample at low temperatures condition. The obtained data of shear rate and shear stress plotted. The dose of biodiesel derived additive in neat waxy crude oil was varied between 0.1 to 0.5 v/v at the operating low temperature. The experimental investigations furnish that there is significant decrease in rheological properties with the decrease in pour point and temperature upon the addition of biodiesel derived additive hence, significantly enhance the flow of waxy crude in a flow system.\",\"PeriodicalId\":11110,\"journal\":{\"name\":\"Day 2 Tue, August 06, 2019\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 06, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/198798-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198798-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the Potential of Bio-Derived Flow Improver and Its Effect on Nigeria Waxy Crude
A root cause of many oil industry production and flow problem is paraffin wax especially in cold and deep offshore fields which are at low temperatures. About 82 – 89% of the hydrocarbon produced in the world suffers when wax precipitates out and solidifies in the pore spaces and channels of flow, around the wellbore, in the production wells or tubing, perforations, pump strings, and rods, and the whole oil transport flow-lines systems. The flow capacity of waxy crude can be quantified and evaluated using the means of pour point measurement. However, the description of this property during the flow of waxy crude is insufficient because the waxy crude rheological properties depend on the viscosity history. Using gelation theory, viscosity – temperature data can be analyzed and used to characterize the temperature behavior of waxy crude as such crude has the tendency to gel at low temperature. This paper evaluates Nigerian Waxy Crude Oil using biodiesel based material as an additive. Laboratory measurements on rheology were carried out on the sample at low temperatures condition. The obtained data of shear rate and shear stress plotted. The dose of biodiesel derived additive in neat waxy crude oil was varied between 0.1 to 0.5 v/v at the operating low temperature. The experimental investigations furnish that there is significant decrease in rheological properties with the decrease in pour point and temperature upon the addition of biodiesel derived additive hence, significantly enhance the flow of waxy crude in a flow system.