{"title":"非分布序列集的拓扑性质","authors":"József Bukor, J. Tóth","doi":"10.2478/ausm-2020-0018","DOIUrl":null,"url":null,"abstract":"Abstract The real sequence (xn) is maldistributed if for any non-empty interval I, the set {n ∈ : xn ∈I} has upper asymptotic density 1. The main result of this note is that the set of all maldistributed real sequences is a residual set in the set of all real sequences (i.e., the maldistribution is a typical property in the sense of Baire categories). We also generalize this result.","PeriodicalId":43054,"journal":{"name":"Acta Universitatis Sapientiae-Mathematica","volume":"13 1","pages":"272 - 279"},"PeriodicalIF":0.6000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On topological properties of the set of maldistributed sequences\",\"authors\":\"József Bukor, J. Tóth\",\"doi\":\"10.2478/ausm-2020-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The real sequence (xn) is maldistributed if for any non-empty interval I, the set {n ∈ : xn ∈I} has upper asymptotic density 1. The main result of this note is that the set of all maldistributed real sequences is a residual set in the set of all real sequences (i.e., the maldistribution is a typical property in the sense of Baire categories). We also generalize this result.\",\"PeriodicalId\":43054,\"journal\":{\"name\":\"Acta Universitatis Sapientiae-Mathematica\",\"volume\":\"13 1\",\"pages\":\"272 - 279\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae-Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae-Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On topological properties of the set of maldistributed sequences
Abstract The real sequence (xn) is maldistributed if for any non-empty interval I, the set {n ∈ : xn ∈I} has upper asymptotic density 1. The main result of this note is that the set of all maldistributed real sequences is a residual set in the set of all real sequences (i.e., the maldistribution is a typical property in the sense of Baire categories). We also generalize this result.