Yiping Xiao, Wenwen Zheng, B. Yuan, Chao Wen, M. Lanza
{"title":"高精度二维材料厚度测定","authors":"Yiping Xiao, Wenwen Zheng, B. Yuan, Chao Wen, M. Lanza","doi":"10.1002/crat.202100056","DOIUrl":null,"url":null,"abstract":"Determining the thickness of two‐dimensional (2D) materials accurately and reliably is highly necessary for multiple investigations, but at the same time it can be quite complex. Most studies in this field measure a topographic map at the edge of the 2D material using an atomic force microscope (AFM), and plot a single‐line cross‐section using the software of the AFM. However, this method is highly inaccurate and can result in high relative errors due to surface roughness and line‐to‐line variability. This is even more important in ultrathin (<4 nm) 2D materials grown by chemical vapor deposition, as these exhibit a larger surface roughness (compared to mechanically exfoliated) due to the high density of local defects. Here it is shown that the thickness of ultrathin 2D materials can be determined statistically with high accuracy and reliability in a very easy way by plotting the histogram height plot. Using this method should enhance the reliability of investigations and research papers in the field of 2D materials.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Highly Accurate Thickness Determination of 2D Materials\",\"authors\":\"Yiping Xiao, Wenwen Zheng, B. Yuan, Chao Wen, M. Lanza\",\"doi\":\"10.1002/crat.202100056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the thickness of two‐dimensional (2D) materials accurately and reliably is highly necessary for multiple investigations, but at the same time it can be quite complex. Most studies in this field measure a topographic map at the edge of the 2D material using an atomic force microscope (AFM), and plot a single‐line cross‐section using the software of the AFM. However, this method is highly inaccurate and can result in high relative errors due to surface roughness and line‐to‐line variability. This is even more important in ultrathin (<4 nm) 2D materials grown by chemical vapor deposition, as these exhibit a larger surface roughness (compared to mechanically exfoliated) due to the high density of local defects. Here it is shown that the thickness of ultrathin 2D materials can be determined statistically with high accuracy and reliability in a very easy way by plotting the histogram height plot. Using this method should enhance the reliability of investigations and research papers in the field of 2D materials.\",\"PeriodicalId\":10797,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/crat.202100056\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100056","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Highly Accurate Thickness Determination of 2D Materials
Determining the thickness of two‐dimensional (2D) materials accurately and reliably is highly necessary for multiple investigations, but at the same time it can be quite complex. Most studies in this field measure a topographic map at the edge of the 2D material using an atomic force microscope (AFM), and plot a single‐line cross‐section using the software of the AFM. However, this method is highly inaccurate and can result in high relative errors due to surface roughness and line‐to‐line variability. This is even more important in ultrathin (<4 nm) 2D materials grown by chemical vapor deposition, as these exhibit a larger surface roughness (compared to mechanically exfoliated) due to the high density of local defects. Here it is shown that the thickness of ultrathin 2D materials can be determined statistically with high accuracy and reliability in a very easy way by plotting the histogram height plot. Using this method should enhance the reliability of investigations and research papers in the field of 2D materials.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing