磁流体力学理论中场梯度张量不变量的拉格朗日演化

Q1 Mathematics
Virgilio Quattrociocchi , Giuseppe Consolini , Massimo Materassi , Tommaso Alberti , Ermanno Pietropaolo
{"title":"磁流体力学理论中场梯度张量不变量的拉格朗日演化","authors":"Virgilio Quattrociocchi ,&nbsp;Giuseppe Consolini ,&nbsp;Massimo Materassi ,&nbsp;Tommaso Alberti ,&nbsp;Ermanno Pietropaolo","doi":"10.1016/j.csfx.2022.100080","DOIUrl":null,"url":null,"abstract":"<div><p>In 1982 in a series of works Vielliefosse [1, 2] discussed a nonlinear homogeneous evolution equation for the velocity gradient tensor in fluid dynamics. Later Cantwell [3] extended this formalism to the non-homogeneous case including the effects of viscous diffusion and cross derivatives of pressure field. Here, we derive the evolution equations of the geometrical invariants of the magnetic and velocity field gradient tensors in the case of magneto-hydrodynamics for both non-homogeneous and homogeneous cases, i.e., considering or neglecting viscous effects and source terms. The inclusion of dissipation effects and higher-order gradient terms introduces a non trivial evolution of invariants, which can be treated as a stochastic evolution equation. Conversely, in the homogeneous case, the magnetic field invariants do not evolve, i.e., the magnetic field line topology is conserved, while the corresponding velocity invariants are affected by magnetic forces. By writing the equations of the velocity field invariants as a dynamical system we can identify the role of the different terms in the evolution equations. In detail, in the homogenous case we show that the term associated with the current density drives transitions between hyperbolic and elliptical structures. Evolution equations are also discussed in the perspective of an application to the analysis of magneto-hydrodynamic turbulence.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"9 ","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054422000100/pdfft?md5=7fec1e7b9ff7443f33f9d2259c6e03bc&pid=1-s2.0-S2590054422000100-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Lagrangian evolution of field gradient tensor invariants in magneto-hydrodynamic theory\",\"authors\":\"Virgilio Quattrociocchi ,&nbsp;Giuseppe Consolini ,&nbsp;Massimo Materassi ,&nbsp;Tommaso Alberti ,&nbsp;Ermanno Pietropaolo\",\"doi\":\"10.1016/j.csfx.2022.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1982 in a series of works Vielliefosse [1, 2] discussed a nonlinear homogeneous evolution equation for the velocity gradient tensor in fluid dynamics. Later Cantwell [3] extended this formalism to the non-homogeneous case including the effects of viscous diffusion and cross derivatives of pressure field. Here, we derive the evolution equations of the geometrical invariants of the magnetic and velocity field gradient tensors in the case of magneto-hydrodynamics for both non-homogeneous and homogeneous cases, i.e., considering or neglecting viscous effects and source terms. The inclusion of dissipation effects and higher-order gradient terms introduces a non trivial evolution of invariants, which can be treated as a stochastic evolution equation. Conversely, in the homogeneous case, the magnetic field invariants do not evolve, i.e., the magnetic field line topology is conserved, while the corresponding velocity invariants are affected by magnetic forces. By writing the equations of the velocity field invariants as a dynamical system we can identify the role of the different terms in the evolution equations. In detail, in the homogenous case we show that the term associated with the current density drives transitions between hyperbolic and elliptical structures. Evolution equations are also discussed in the perspective of an application to the analysis of magneto-hydrodynamic turbulence.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"9 \",\"pages\":\"Article 100080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590054422000100/pdfft?md5=7fec1e7b9ff7443f33f9d2259c6e03bc&pid=1-s2.0-S2590054422000100-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054422000100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054422000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

1982年,Vielliefosse[1,2]在一系列著作中讨论了流体动力学中速度梯度张量的非线性齐次演化方程。后来Cantwell[3]将这种形式扩展到非均匀情况,包括粘性扩散和压力场交叉导数的影响。本文推导了非齐次和齐次磁流体力学情况下磁场和速度场梯度张量几何不变量的演化方程,即考虑或忽略粘性效应和源项。由于耗散效应和高阶梯度项的加入,引入了不变量的非平凡演化,可以看作是随机演化方程。相反,在均匀情况下,磁场不变量不进化,即磁场线拓扑是守恒的,而相应的速度不变量受到磁力的影响。通过将速度场不变量方程写成一个动力系统,我们可以确定演化方程中不同项的作用。详细地说,在齐次情况下,我们证明了与电流密度相关的项驱动双曲线和椭圆结构之间的转换。从应用于磁流体动力湍流分析的角度讨论了演化方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian evolution of field gradient tensor invariants in magneto-hydrodynamic theory

In 1982 in a series of works Vielliefosse [1, 2] discussed a nonlinear homogeneous evolution equation for the velocity gradient tensor in fluid dynamics. Later Cantwell [3] extended this formalism to the non-homogeneous case including the effects of viscous diffusion and cross derivatives of pressure field. Here, we derive the evolution equations of the geometrical invariants of the magnetic and velocity field gradient tensors in the case of magneto-hydrodynamics for both non-homogeneous and homogeneous cases, i.e., considering or neglecting viscous effects and source terms. The inclusion of dissipation effects and higher-order gradient terms introduces a non trivial evolution of invariants, which can be treated as a stochastic evolution equation. Conversely, in the homogeneous case, the magnetic field invariants do not evolve, i.e., the magnetic field line topology is conserved, while the corresponding velocity invariants are affected by magnetic forces. By writing the equations of the velocity field invariants as a dynamical system we can identify the role of the different terms in the evolution equations. In detail, in the homogenous case we show that the term associated with the current density drives transitions between hyperbolic and elliptical structures. Evolution equations are also discussed in the perspective of an application to the analysis of magneto-hydrodynamic turbulence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信