试用RDF:为RDF数据调整图形查询语言

L. Libkin, Juan L. Reutter, D. Vrgoc
{"title":"试用RDF:为RDF数据调整图形查询语言","authors":"L. Libkin, Juan L. Reutter, D. Vrgoc","doi":"10.1145/2463664.2465226","DOIUrl":null,"url":null,"abstract":"Querying RDF data is viewed as one of the main applications of graph query languages, and yet the standard model of graph databases -- essentially labeled graphs -- is different from the triples-based model of RDF. While encodings of RDF databases into graph data exist, we show that even the most natural ones are bound to lose some functionality when used in conjunction with graph query languages. The solution is to work directly with triples, but then many properties taken for granted in the graph database context (e.g., reachability) lose their natural meaning.\n Our goal is to introduce languages that work directly over triples and are closed, i.e., they produce sets of triples, rather than graphs. Our basic language is called TriAL, or Triple Algebra: it guarantees closure properties by replacing the product with a family of join operations. We extend TriAL with recursion, and explain why such an extension is more intricate for triples than for graphs. We present a declarative language, namely a fragment of datalog, capturing the recursive algebra. For both languages, the combined complexity of query evaluation is given by low-degree polynomials. We compare our languages with relational languages, such as finite-variable logics, and previously studied graph query languages such as adaptations of XPath, regular path queries, and nested regular expressions; many of these languages are subsumed by the recursive triple algebra. We also provide examples of the usefulness of TriAL in querying graph and RDF data.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"89 1","pages":"201-212"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Trial for RDF: adapting graph query languages for RDF data\",\"authors\":\"L. Libkin, Juan L. Reutter, D. Vrgoc\",\"doi\":\"10.1145/2463664.2465226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Querying RDF data is viewed as one of the main applications of graph query languages, and yet the standard model of graph databases -- essentially labeled graphs -- is different from the triples-based model of RDF. While encodings of RDF databases into graph data exist, we show that even the most natural ones are bound to lose some functionality when used in conjunction with graph query languages. The solution is to work directly with triples, but then many properties taken for granted in the graph database context (e.g., reachability) lose their natural meaning.\\n Our goal is to introduce languages that work directly over triples and are closed, i.e., they produce sets of triples, rather than graphs. Our basic language is called TriAL, or Triple Algebra: it guarantees closure properties by replacing the product with a family of join operations. We extend TriAL with recursion, and explain why such an extension is more intricate for triples than for graphs. We present a declarative language, namely a fragment of datalog, capturing the recursive algebra. For both languages, the combined complexity of query evaluation is given by low-degree polynomials. We compare our languages with relational languages, such as finite-variable logics, and previously studied graph query languages such as adaptations of XPath, regular path queries, and nested regular expressions; many of these languages are subsumed by the recursive triple algebra. We also provide examples of the usefulness of TriAL in querying graph and RDF data.\",\"PeriodicalId\":92118,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"volume\":\"89 1\",\"pages\":\"201-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463664.2465226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463664.2465226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

查询RDF数据被视为图查询语言的主要应用之一,然而图数据库的标准模型——本质上是标记的图——不同于RDF的基于三元组的模型。虽然存在将RDF数据库编码为图数据的方法,但我们表明,即使是最自然的RDF数据库,在与图查询语言结合使用时,也必然会失去一些功能。解决方案是直接使用三元组,但是在图数据库上下文中,许多被认为是理所当然的属性(例如,可达性)失去了其自然意义。我们的目标是引入直接在三元组上工作并且是封闭的语言,也就是说,它们产生三元组的集合,而不是图。我们的基本语言叫做TriAL,或者Triple Algebra:它通过用一系列连接操作替换乘积来保证闭包属性。我们用递归扩展了TriAL,并解释了为什么这种扩展对于三元组比对于图更复杂。我们提出了一种声明性语言,即数据的片段,捕捉递归代数。对于两种语言,查询求值的组合复杂度由低次多项式表示。我们将我们的语言与关系语言(如有限变量逻辑)和先前研究过的图形查询语言(如XPath的适配、正则路径查询和嵌套正则表达式)进行比较;这些语言中的许多都被归为递归三重代数。我们还提供了TriAL在查询图和RDF数据方面有用的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trial for RDF: adapting graph query languages for RDF data
Querying RDF data is viewed as one of the main applications of graph query languages, and yet the standard model of graph databases -- essentially labeled graphs -- is different from the triples-based model of RDF. While encodings of RDF databases into graph data exist, we show that even the most natural ones are bound to lose some functionality when used in conjunction with graph query languages. The solution is to work directly with triples, but then many properties taken for granted in the graph database context (e.g., reachability) lose their natural meaning. Our goal is to introduce languages that work directly over triples and are closed, i.e., they produce sets of triples, rather than graphs. Our basic language is called TriAL, or Triple Algebra: it guarantees closure properties by replacing the product with a family of join operations. We extend TriAL with recursion, and explain why such an extension is more intricate for triples than for graphs. We present a declarative language, namely a fragment of datalog, capturing the recursive algebra. For both languages, the combined complexity of query evaluation is given by low-degree polynomials. We compare our languages with relational languages, such as finite-variable logics, and previously studied graph query languages such as adaptations of XPath, regular path queries, and nested regular expressions; many of these languages are subsumed by the recursive triple algebra. We also provide examples of the usefulness of TriAL in querying graph and RDF data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信