交叉比失真与Douady-Earle扩展;如何控制原点附近的膨胀

IF 0.9 4区 数学 Q2 Mathematics
Jun Hu, Oleg Muzician
{"title":"交叉比失真与Douady-Earle扩展;如何控制原点附近的膨胀","authors":"Jun Hu, Oleg Muzician","doi":"10.5186/AASFM.2019.4432","DOIUrl":null,"url":null,"abstract":"In this paper, we study how the maximal dilatation of the Douady–Earle extension near the origin is controlled by the distortion of the boundary map on finitely many points. Consider the case of points evenly spread on the circle. We show that the maximal dilatation of the extension in a neighborhood of the origin has an upper bound only depending on the cross-ratio distortion of the boundary map on these points if and only if the number n of the points is more than 4. Furthermore, we show that the size of the neighborhood is universal for each n ≥ 5 in the sense that its size only depends on the distortion.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cross-ratio distortion and Douady–Earle extension: III. How to control the dilatation near the origin\",\"authors\":\"Jun Hu, Oleg Muzician\",\"doi\":\"10.5186/AASFM.2019.4432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study how the maximal dilatation of the Douady–Earle extension near the origin is controlled by the distortion of the boundary map on finitely many points. Consider the case of points evenly spread on the circle. We show that the maximal dilatation of the extension in a neighborhood of the origin has an upper bound only depending on the cross-ratio distortion of the boundary map on these points if and only if the number n of the points is more than 4. Furthermore, we show that the size of the neighborhood is universal for each n ≥ 5 in the sense that its size only depends on the distortion.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4432\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4432","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了如何利用有限多个点上边界映射的畸变来控制原点附近Douady-Earle扩展的最大膨胀。考虑点均匀分布在圆上的情况。我们证明,当且仅当点的数目n大于4时,在原点附近的扩展的最大扩张有一个上界,这取决于这些点上的边界映射的交叉比畸变。此外,我们证明了邻域的大小对于每个n≥5是普遍的,因为它的大小只取决于畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-ratio distortion and Douady–Earle extension: III. How to control the dilatation near the origin
In this paper, we study how the maximal dilatation of the Douady–Earle extension near the origin is controlled by the distortion of the boundary map on finitely many points. Consider the case of points evenly spread on the circle. We show that the maximal dilatation of the extension in a neighborhood of the origin has an upper bound only depending on the cross-ratio distortion of the boundary map on these points if and only if the number n of the points is more than 4. Furthermore, we show that the size of the neighborhood is universal for each n ≥ 5 in the sense that its size only depends on the distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信