M. Dyčka, M. Juliš, L. Klakurková, L. Dyčková, P. Gejdoš
{"title":"熔模铸造工艺中采用sf6和3m novec 612作为保护气体,研究了az91E镁合金的结晶金属反应","authors":"M. Dyčka, M. Juliš, L. Klakurková, L. Dyčková, P. Gejdoš","doi":"10.37904/metal.2020.3584","DOIUrl":null,"url":null,"abstract":"In this article, the intensity of mold metal reactions between ceramic shell and magnesium alloy AZ91E is studied. The two possible protective gasses used for melt protection are studied SF6 (sulphur hexafluoride) and 3M NOVEC 612. The scanning electron microscopy (SEM) with X-ray spectroscopy (EDS) were used for the analyses of the mold-metal reaction products on the interface between the magnesium alloy and the ceramic shell. Penetration of AZ91E into the ceramic shell was observed, thickness of mold-metal reaction products layer ranged from 0 μm to 80 μm. The intensity of mold metal reaction is much higher on the outer surface than on the inner surface of the casting. The thicker layer of the fine zircon particles as the first layer of ceramic shell seems to lower the mold metal reactions intensity to minimum. While using SF6, the penetration of AZ91E into ceramic shell was observed, the corroded layer consists of Al-enriched phase with higher content of oxygen. The use of 3M NOVEC 612 as the protective gas led to formation of continuous MgO layer between the ceramic shell and the magnesium alloy, thickness of this layer was up to 60 μm depending on the ceramic shell composition in the close surrounding area.","PeriodicalId":21337,"journal":{"name":"Revue De Metallurgie-cahiers D Informations Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"mold metal reactions of magnesium alloy az91E using sf6 and 3m novec 612 as protective gasses in investment casting technology\",\"authors\":\"M. Dyčka, M. Juliš, L. Klakurková, L. Dyčková, P. Gejdoš\",\"doi\":\"10.37904/metal.2020.3584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the intensity of mold metal reactions between ceramic shell and magnesium alloy AZ91E is studied. The two possible protective gasses used for melt protection are studied SF6 (sulphur hexafluoride) and 3M NOVEC 612. The scanning electron microscopy (SEM) with X-ray spectroscopy (EDS) were used for the analyses of the mold-metal reaction products on the interface between the magnesium alloy and the ceramic shell. Penetration of AZ91E into the ceramic shell was observed, thickness of mold-metal reaction products layer ranged from 0 μm to 80 μm. The intensity of mold metal reaction is much higher on the outer surface than on the inner surface of the casting. The thicker layer of the fine zircon particles as the first layer of ceramic shell seems to lower the mold metal reactions intensity to minimum. While using SF6, the penetration of AZ91E into ceramic shell was observed, the corroded layer consists of Al-enriched phase with higher content of oxygen. The use of 3M NOVEC 612 as the protective gas led to formation of continuous MgO layer between the ceramic shell and the magnesium alloy, thickness of this layer was up to 60 μm depending on the ceramic shell composition in the close surrounding area.\",\"PeriodicalId\":21337,\"journal\":{\"name\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue De Metallurgie-cahiers D Informations Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
mold metal reactions of magnesium alloy az91E using sf6 and 3m novec 612 as protective gasses in investment casting technology
In this article, the intensity of mold metal reactions between ceramic shell and magnesium alloy AZ91E is studied. The two possible protective gasses used for melt protection are studied SF6 (sulphur hexafluoride) and 3M NOVEC 612. The scanning electron microscopy (SEM) with X-ray spectroscopy (EDS) were used for the analyses of the mold-metal reaction products on the interface between the magnesium alloy and the ceramic shell. Penetration of AZ91E into the ceramic shell was observed, thickness of mold-metal reaction products layer ranged from 0 μm to 80 μm. The intensity of mold metal reaction is much higher on the outer surface than on the inner surface of the casting. The thicker layer of the fine zircon particles as the first layer of ceramic shell seems to lower the mold metal reactions intensity to minimum. While using SF6, the penetration of AZ91E into ceramic shell was observed, the corroded layer consists of Al-enriched phase with higher content of oxygen. The use of 3M NOVEC 612 as the protective gas led to formation of continuous MgO layer between the ceramic shell and the magnesium alloy, thickness of this layer was up to 60 μm depending on the ceramic shell composition in the close surrounding area.