{"title":"一类基于高斯法投影法的s步非线性迭代方案","authors":"R. Vigneswaran, S. Kajanthan","doi":"10.37516/adv.math.sci.2019.0061","DOIUrl":null,"url":null,"abstract":"Various iteration schemes are proposed by various authors to solve nonlinear equations arising in the implementation of implicit Runge-Kutta methods. In this paper, a class of s-step non-linear scheme based on projection method is proposed to accelerate the convergence rate of those linear iteration schemes. In this scheme, sequence of numerical solutions is updated after each sub-step is completed. For 2-stage Gauss method, upper bound for the spectral radius of its iteration matrix was obtained in the left half complex plane. This result is extended to 3-stage and 4-stage Gauss methods by transforming the coefficient matrix and the iteration matrix to a block diagonal form. Finally, some numerical experiments are carried out to confirm the obtained theoretical results.","PeriodicalId":53941,"journal":{"name":"Advances and Applications in Mathematical Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A CLASS OF S-STEP NON-LINEAR ITERATION SCHEME BASED ON PROJECTION METHOD FOR GAUSS METHOD\",\"authors\":\"R. Vigneswaran, S. Kajanthan\",\"doi\":\"10.37516/adv.math.sci.2019.0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various iteration schemes are proposed by various authors to solve nonlinear equations arising in the implementation of implicit Runge-Kutta methods. In this paper, a class of s-step non-linear scheme based on projection method is proposed to accelerate the convergence rate of those linear iteration schemes. In this scheme, sequence of numerical solutions is updated after each sub-step is completed. For 2-stage Gauss method, upper bound for the spectral radius of its iteration matrix was obtained in the left half complex plane. This result is extended to 3-stage and 4-stage Gauss methods by transforming the coefficient matrix and the iteration matrix to a block diagonal form. Finally, some numerical experiments are carried out to confirm the obtained theoretical results.\",\"PeriodicalId\":53941,\"journal\":{\"name\":\"Advances and Applications in Mathematical Sciences\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances and Applications in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37516/adv.math.sci.2019.0061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37516/adv.math.sci.2019.0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CLASS OF S-STEP NON-LINEAR ITERATION SCHEME BASED ON PROJECTION METHOD FOR GAUSS METHOD
Various iteration schemes are proposed by various authors to solve nonlinear equations arising in the implementation of implicit Runge-Kutta methods. In this paper, a class of s-step non-linear scheme based on projection method is proposed to accelerate the convergence rate of those linear iteration schemes. In this scheme, sequence of numerical solutions is updated after each sub-step is completed. For 2-stage Gauss method, upper bound for the spectral radius of its iteration matrix was obtained in the left half complex plane. This result is extended to 3-stage and 4-stage Gauss methods by transforming the coefficient matrix and the iteration matrix to a block diagonal form. Finally, some numerical experiments are carried out to confirm the obtained theoretical results.