从医患对话的数字文本自动生成精神病病例笔记

Nazmul Kazi, Indika Kahanda
{"title":"从医患对话的数字文本自动生成精神病病例笔记","authors":"Nazmul Kazi, Indika Kahanda","doi":"10.18653/v1/W19-1918","DOIUrl":null,"url":null,"abstract":"Electronic health records (EHRs) are notorious for reducing the face-to-face time with patients while increasing the screen-time for clinicians leading to burnout. This is especially problematic for psychiatry care in which maintaining consistent eye-contact and non-verbal cues are just as important as the spoken words. In this ongoing work, we explore the feasibility of automatically generating psychiatric EHR case notes from digital transcripts of doctor-patient conversation using a two-step approach: (1) predicting semantic topics for segments of transcripts using supervised machine learning, and (2) generating formal text of those segments using natural language processing. Through a series of preliminary experimental results obtained through a collection of synthetic and real-life transcripts, we demonstrate the viability of this approach.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"46 1 1","pages":"e27497"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Automatically Generating Psychiatric Case Notes From Digital Transcripts of Doctor-Patient Conversations\",\"authors\":\"Nazmul Kazi, Indika Kahanda\",\"doi\":\"10.18653/v1/W19-1918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic health records (EHRs) are notorious for reducing the face-to-face time with patients while increasing the screen-time for clinicians leading to burnout. This is especially problematic for psychiatry care in which maintaining consistent eye-contact and non-verbal cues are just as important as the spoken words. In this ongoing work, we explore the feasibility of automatically generating psychiatric EHR case notes from digital transcripts of doctor-patient conversation using a two-step approach: (1) predicting semantic topics for segments of transcripts using supervised machine learning, and (2) generating formal text of those segments using natural language processing. Through a series of preliminary experimental results obtained through a collection of synthetic and real-life transcripts, we demonstrate the viability of this approach.\",\"PeriodicalId\":93040,\"journal\":{\"name\":\"PeerJ preprints\",\"volume\":\"46 1 1\",\"pages\":\"e27497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ preprints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-1918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-1918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

电子健康记录(EHRs)因减少与患者面对面的时间而臭名昭著,同时增加了临床医生的屏幕时间,导致倦怠。这对于精神病学护理来说尤其有问题,因为在精神病学护理中,保持持续的目光接触和非语言暗示与口头语言一样重要。在这项正在进行的工作中,我们探索了从医患对话的数字转录本中自动生成精神病学电子病历病例记录的可行性,采用两步方法:(1)使用监督机器学习预测转录片段的语义主题,(2)使用自然语言处理生成这些片段的正式文本。通过一系列通过收集合成和现实生活转录本获得的初步实验结果,我们证明了这种方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatically Generating Psychiatric Case Notes From Digital Transcripts of Doctor-Patient Conversations
Electronic health records (EHRs) are notorious for reducing the face-to-face time with patients while increasing the screen-time for clinicians leading to burnout. This is especially problematic for psychiatry care in which maintaining consistent eye-contact and non-verbal cues are just as important as the spoken words. In this ongoing work, we explore the feasibility of automatically generating psychiatric EHR case notes from digital transcripts of doctor-patient conversation using a two-step approach: (1) predicting semantic topics for segments of transcripts using supervised machine learning, and (2) generating formal text of those segments using natural language processing. Through a series of preliminary experimental results obtained through a collection of synthetic and real-life transcripts, we demonstrate the viability of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信