n值最大副相容矩阵

Q1 Arts and Humanities
A. Trybus
{"title":"n值最大副相容矩阵","authors":"A. Trybus","doi":"10.1080/11663081.2019.1578602","DOIUrl":null,"url":null,"abstract":"ABSTRACT The articles Maximality and Refutability Skura [(2004). Maximality and refutability. Notre Dame Journal of Formal Logic, 45, 65–72] and Three-valued Maximal Paraconsistent Logics Skura and Tuziak [(2005). Three-valued maximal paraconsistent logics. In Logika (Vol. 23). Wydawnictwo Uniwersytetu Wrocławskiego] introduced a simple method of proving maximality (in the two distinguished senses) of a given paraconsistent matrix. This method stemmed from the so-called refutation calculus, where the focus in on rejecting rather than accepting formulas. The article A Generalisation of a Refutation-related Method in Paraconsistent Logics Trybus [(2018). A generalisation of a refutation-related method in paraconsistent logics. Logic and Logical Philosophy, 27(2). doi:10.12775/LLP.2018.002] was a first step towards generalising the method. In it, a number of 3-valued paraconsistent matrices were shown maximal. In this article we extend these results to cover a number of n-valued (n>2) paraconsistent matrices using the same method.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"12 1","pages":"171 - 183"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"n-valued maximal paraconsistent matrices\",\"authors\":\"A. Trybus\",\"doi\":\"10.1080/11663081.2019.1578602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The articles Maximality and Refutability Skura [(2004). Maximality and refutability. Notre Dame Journal of Formal Logic, 45, 65–72] and Three-valued Maximal Paraconsistent Logics Skura and Tuziak [(2005). Three-valued maximal paraconsistent logics. In Logika (Vol. 23). Wydawnictwo Uniwersytetu Wrocławskiego] introduced a simple method of proving maximality (in the two distinguished senses) of a given paraconsistent matrix. This method stemmed from the so-called refutation calculus, where the focus in on rejecting rather than accepting formulas. The article A Generalisation of a Refutation-related Method in Paraconsistent Logics Trybus [(2018). A generalisation of a refutation-related method in paraconsistent logics. Logic and Logical Philosophy, 27(2). doi:10.12775/LLP.2018.002] was a first step towards generalising the method. In it, a number of 3-valued paraconsistent matrices were shown maximal. In this article we extend these results to cover a number of n-valued (n>2) paraconsistent matrices using the same method.\",\"PeriodicalId\":38573,\"journal\":{\"name\":\"Journal of Applied Non-Classical Logics\",\"volume\":\"12 1\",\"pages\":\"171 - 183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Non-Classical Logics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/11663081.2019.1578602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2019.1578602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

文章的极大性和可辩驳性Skura[2004]。极大性和可辩驳性。三值最大副协调逻辑Skura and Tuziak[2005]。三值最大副一致逻辑。在洛吉卡(第23卷)。Wydawnictwo Uniwersytetu Wrocławskiego]介绍了一种简单的方法来证明一个给定的副一致矩阵的极大性(在两种不同的意义上)。这种方法源于所谓的反驳演算,其重点是拒绝而不是接受公式。文章《副一致逻辑中一种与反驳相关的方法的推广》[(2018)。副一致逻辑中与反驳有关的方法的推广。逻辑与逻辑哲学,27(2)。[doi:10.12775/LLP.2018.002]是推广该方法的第一步。在此模型中,证明了一些3值副相容矩阵的极大性。在本文中,我们使用相同的方法将这些结果扩展到一些n值(n>2)的准一致矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
n-valued maximal paraconsistent matrices
ABSTRACT The articles Maximality and Refutability Skura [(2004). Maximality and refutability. Notre Dame Journal of Formal Logic, 45, 65–72] and Three-valued Maximal Paraconsistent Logics Skura and Tuziak [(2005). Three-valued maximal paraconsistent logics. In Logika (Vol. 23). Wydawnictwo Uniwersytetu Wrocławskiego] introduced a simple method of proving maximality (in the two distinguished senses) of a given paraconsistent matrix. This method stemmed from the so-called refutation calculus, where the focus in on rejecting rather than accepting formulas. The article A Generalisation of a Refutation-related Method in Paraconsistent Logics Trybus [(2018). A generalisation of a refutation-related method in paraconsistent logics. Logic and Logical Philosophy, 27(2). doi:10.12775/LLP.2018.002] was a first step towards generalising the method. In it, a number of 3-valued paraconsistent matrices were shown maximal. In this article we extend these results to cover a number of n-valued (n>2) paraconsistent matrices using the same method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信