{"title":"一种改进的逻辑回归方法用于正学习和无标签学习","authors":"Kristen Jaskie, C. Elkan, A. Spanias","doi":"10.1109/IEEECONF44664.2019.9048765","DOIUrl":null,"url":null,"abstract":"The positive and unlabeled learning problem is a semi-supervised binary classification problem. In PU learning, only an unknown percentage of positive samples are known, while the remaining samples, both positive and negative, are unknown. We wish to learn a decision boundary that separates the positive and negative data distributions. In this paper, we build on an existing popular probabilistic positive unlabeled learning algorithm and introduce a new modified logistic regression learner with a variable upper bound that we argue provides a better theoretical solution for this problem. We then apply this solution to both simulated data and to a simple image classification problem using the MNIST dataset with significantly improved results.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"99 1","pages":"2007-2011"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Modified Logistic Regression for Positive and Unlabeled Learning\",\"authors\":\"Kristen Jaskie, C. Elkan, A. Spanias\",\"doi\":\"10.1109/IEEECONF44664.2019.9048765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The positive and unlabeled learning problem is a semi-supervised binary classification problem. In PU learning, only an unknown percentage of positive samples are known, while the remaining samples, both positive and negative, are unknown. We wish to learn a decision boundary that separates the positive and negative data distributions. In this paper, we build on an existing popular probabilistic positive unlabeled learning algorithm and introduce a new modified logistic regression learner with a variable upper bound that we argue provides a better theoretical solution for this problem. We then apply this solution to both simulated data and to a simple image classification problem using the MNIST dataset with significantly improved results.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"99 1\",\"pages\":\"2007-2011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Modified Logistic Regression for Positive and Unlabeled Learning
The positive and unlabeled learning problem is a semi-supervised binary classification problem. In PU learning, only an unknown percentage of positive samples are known, while the remaining samples, both positive and negative, are unknown. We wish to learn a decision boundary that separates the positive and negative data distributions. In this paper, we build on an existing popular probabilistic positive unlabeled learning algorithm and introduce a new modified logistic regression learner with a variable upper bound that we argue provides a better theoretical solution for this problem. We then apply this solution to both simulated data and to a simple image classification problem using the MNIST dataset with significantly improved results.