Tu Anh Nguyen Thi, A. Vu
{"title":"纳米复合ZnO/g-C3N4在可见光下改善染料降解:制备、表征和性能研究","authors":"Tu Anh Nguyen Thi, A. Vu","doi":"10.9767/bcrec.17.2.13931.403-419","DOIUrl":null,"url":null,"abstract":"In this study, ZnO/g-C3N4 nanocomposites were prepared via a physical mixing-calcination process for improved degradation of dyes under visible light irradiation. The BET surface area, pore volume, crystal size, and pHpzc of the ZnO/g-C3N4 composite were 3.9 m2/g, 0.034 cm3/g, 18.1 nm, and 7.7, respectively. Although the morphology of the ZnO/g-C3N4 composite was very different from that of pure g-C3N4, their average pore sizes were similar. The Eg of the ZnO/g-C3N4 composite (3.195 eV) was slightly lower than that of ZnO (3.195) but much higher than that of g-C3N4 (2.875). The interface interaction of ZnO and g-C3N4, which was revealed by oscillations of Zn-C, benefited the transport of photoinduced charge carriers and reduced the recombination of electron-hole. As the result, the ZnO/g-C3N4 composite had higher photocatalytic activity than ZnO and g-C3N4. Its degradation efficiency (DE) value for methylene blue (MB) in 90 min and rate constant were 93.2 % and 0.025 min‑1, respectively. In addition, the effects of ZnO/urea molar ratio, catalyst dosage, solution pH, and concentration of dye on photocatalytic degradation of MB were completely investigated. The photocatalytic performance of the ZnO/g-C3N4 composite was evaluated by the degradation of other persistent organic compounds, also compared to other catalysts in the literatures. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Nanocomposite ZnO/g-C3N4 for Improved Degradation of Dyes under Visible Light: Facile Preparation, Characterization, and Performance Investigations\",\"authors\":\"Tu Anh Nguyen Thi, A. Vu\",\"doi\":\"10.9767/bcrec.17.2.13931.403-419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, ZnO/g-C3N4 nanocomposites were prepared via a physical mixing-calcination process for improved degradation of dyes under visible light irradiation. The BET surface area, pore volume, crystal size, and pHpzc of the ZnO/g-C3N4 composite were 3.9 m2/g, 0.034 cm3/g, 18.1 nm, and 7.7, respectively. Although the morphology of the ZnO/g-C3N4 composite was very different from that of pure g-C3N4, their average pore sizes were similar. The Eg of the ZnO/g-C3N4 composite (3.195 eV) was slightly lower than that of ZnO (3.195) but much higher than that of g-C3N4 (2.875). The interface interaction of ZnO and g-C3N4, which was revealed by oscillations of Zn-C, benefited the transport of photoinduced charge carriers and reduced the recombination of electron-hole. As the result, the ZnO/g-C3N4 composite had higher photocatalytic activity than ZnO and g-C3N4. Its degradation efficiency (DE) value for methylene blue (MB) in 90 min and rate constant were 93.2 % and 0.025 min‑1, respectively. In addition, the effects of ZnO/urea molar ratio, catalyst dosage, solution pH, and concentration of dye on photocatalytic degradation of MB were completely investigated. The photocatalytic performance of the ZnO/g-C3N4 composite was evaluated by the degradation of other persistent organic compounds, also compared to other catalysts in the literatures. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). \",\"PeriodicalId\":9366,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.17.2.13931.403-419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.2.13931.403-419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Nanocomposite ZnO/g-C3N4 for Improved Degradation of Dyes under Visible Light: Facile Preparation, Characterization, and Performance Investigations
In this study, ZnO/g-C3N4 nanocomposites were prepared via a physical mixing-calcination process for improved degradation of dyes under visible light irradiation. The BET surface area, pore volume, crystal size, and pHpzc of the ZnO/g-C3N4 composite were 3.9 m2/g, 0.034 cm3/g, 18.1 nm, and 7.7, respectively. Although the morphology of the ZnO/g-C3N4 composite was very different from that of pure g-C3N4, their average pore sizes were similar. The Eg of the ZnO/g-C3N4 composite (3.195 eV) was slightly lower than that of ZnO (3.195) but much higher than that of g-C3N4 (2.875). The interface interaction of ZnO and g-C3N4, which was revealed by oscillations of Zn-C, benefited the transport of photoinduced charge carriers and reduced the recombination of electron-hole. As the result, the ZnO/g-C3N4 composite had higher photocatalytic activity than ZnO and g-C3N4. Its degradation efficiency (DE) value for methylene blue (MB) in 90 min and rate constant were 93.2 % and 0.025 min‑1, respectively. In addition, the effects of ZnO/urea molar ratio, catalyst dosage, solution pH, and concentration of dye on photocatalytic degradation of MB were completely investigated. The photocatalytic performance of the ZnO/g-C3N4 composite was evaluated by the degradation of other persistent organic compounds, also compared to other catalysts in the literatures. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).