大学生深度学习心理应激指标识别与建模

Sci. Program. Pub Date : 2022-01-11 DOI:10.1155/2022/6048088
Yuan Tian
{"title":"大学生深度学习心理应激指标识别与建模","authors":"Yuan Tian","doi":"10.1155/2022/6048088","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of low accuracy of recognition results, long recognition time, and easy interference in traditional methods, a deep learning-oriented recognition modeling method of college students' psychological stress indicators is proposed. First, the ECG signal is collected by the ECG signal acquisition system, and the wavelet transform method is used to denoise the collected ECG signal. Then, the sequential backward selection algorithm is used to select the features of psychological stress indicators to reduce the feature dimension. Finally, based on the convolutional neural network in deep learning technology, a mental pressure indicator recognition model is established and the model parameters are optimized to realize the recognition of college students’ mental pressure indicators. Experimental results show that the method in this paper has high recognition accuracy, has high recognition efficiency, is not susceptible to interference, and has certain feasibility and effectiveness.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"54 1","pages":"6048088:1-6048088:9"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Identification and Modeling of College Students' Psychological Stress Indicators for Deep Learning\",\"authors\":\"Yuan Tian\",\"doi\":\"10.1155/2022/6048088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of low accuracy of recognition results, long recognition time, and easy interference in traditional methods, a deep learning-oriented recognition modeling method of college students' psychological stress indicators is proposed. First, the ECG signal is collected by the ECG signal acquisition system, and the wavelet transform method is used to denoise the collected ECG signal. Then, the sequential backward selection algorithm is used to select the features of psychological stress indicators to reduce the feature dimension. Finally, based on the convolutional neural network in deep learning technology, a mental pressure indicator recognition model is established and the model parameters are optimized to realize the recognition of college students’ mental pressure indicators. Experimental results show that the method in this paper has high recognition accuracy, has high recognition efficiency, is not susceptible to interference, and has certain feasibility and effectiveness.\",\"PeriodicalId\":21628,\"journal\":{\"name\":\"Sci. Program.\",\"volume\":\"54 1\",\"pages\":\"6048088:1-6048088:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Program.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6048088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6048088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对传统方法识别结果准确率低、识别时间长、易受干扰等问题,提出了一种面向深度学习的大学生心理压力指标识别建模方法。首先,心电信号采集系统采集心电信号,并利用小波变换方法对采集到的心电信号进行去噪处理。然后,采用顺序倒向选择算法对心理压力指标特征进行选择,降低特征维数;最后,基于深度学习技术中的卷积神经网络,建立心理压力指标识别模型,并对模型参数进行优化,实现大学生心理压力指标的识别。实验结果表明,本文方法识别精度高,识别效率高,不易受干扰,具有一定的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and Modeling of College Students' Psychological Stress Indicators for Deep Learning
Aiming at the problems of low accuracy of recognition results, long recognition time, and easy interference in traditional methods, a deep learning-oriented recognition modeling method of college students' psychological stress indicators is proposed. First, the ECG signal is collected by the ECG signal acquisition system, and the wavelet transform method is used to denoise the collected ECG signal. Then, the sequential backward selection algorithm is used to select the features of psychological stress indicators to reduce the feature dimension. Finally, based on the convolutional neural network in deep learning technology, a mental pressure indicator recognition model is established and the model parameters are optimized to realize the recognition of college students’ mental pressure indicators. Experimental results show that the method in this paper has high recognition accuracy, has high recognition efficiency, is not susceptible to interference, and has certain feasibility and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信