{"title":"射电望远镜阵列增益分解方法","authors":"A. Boonstra, A. van der Veen","doi":"10.1109/SSP.2001.955298","DOIUrl":null,"url":null,"abstract":"In radio telescope arrays, the complex receiver gains and sensor noise powers are initially unknown and have to be calibrated. Gain calibration enhances the quality of astronomical sky images and moreover, improves the effectiveness of certain radio telescope phased-array data processing techniques, such as radio interference (RFI) mitigation and beamforming. We present several closed form and iterative complex gain estimation methods. These methods are analyzed and compared to the Cramer-Rao lower bound for the variance of the estimated gain. The models are tested both on simulated data and on observed telescope data.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"37 1","pages":"365-368"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Gain decomposition methods for radio telescope arrays\",\"authors\":\"A. Boonstra, A. van der Veen\",\"doi\":\"10.1109/SSP.2001.955298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In radio telescope arrays, the complex receiver gains and sensor noise powers are initially unknown and have to be calibrated. Gain calibration enhances the quality of astronomical sky images and moreover, improves the effectiveness of certain radio telescope phased-array data processing techniques, such as radio interference (RFI) mitigation and beamforming. We present several closed form and iterative complex gain estimation methods. These methods are analyzed and compared to the Cramer-Rao lower bound for the variance of the estimated gain. The models are tested both on simulated data and on observed telescope data.\",\"PeriodicalId\":70952,\"journal\":{\"name\":\"信号处理\",\"volume\":\"37 1\",\"pages\":\"365-368\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2001.955298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gain decomposition methods for radio telescope arrays
In radio telescope arrays, the complex receiver gains and sensor noise powers are initially unknown and have to be calibrated. Gain calibration enhances the quality of astronomical sky images and moreover, improves the effectiveness of certain radio telescope phased-array data processing techniques, such as radio interference (RFI) mitigation and beamforming. We present several closed form and iterative complex gain estimation methods. These methods are analyzed and compared to the Cramer-Rao lower bound for the variance of the estimated gain. The models are tested both on simulated data and on observed telescope data.
期刊介绍:
Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.