在随机图中具有规定残数度的子图上

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Asaf Ferber, Liam Hardiman, M. Krivelevich
{"title":"在随机图中具有规定残数度的子图上","authors":"Asaf Ferber, Liam Hardiman, M. Krivelevich","doi":"10.1002/rsa.21137","DOIUrl":null,"url":null,"abstract":"We show that with high probability the random graph Gn,1/2$$ {G}_{n,1/2} $$ has an induced subgraph of linear size, all of whose degrees are congruent to r(modq)$$ r\\kern0.3em \\left(\\operatorname{mod}\\kern0.3em q\\right) $$ for any fixed r$$ r $$ and q≥2$$ q\\ge 2 $$ . More generally, the same is true for any fixed distribution of degrees modulo q$$ q $$ . Finally, we show that with high probability we can partition the vertices of Gn,1/2$$ {G}_{n,1/2} $$ into q+1$$ q+1 $$ parts of nearly equal size, each of which induces a subgraph all of whose degrees are congruent to r(modq)$$ r\\kern0.3em \\left(\\operatorname{mod}\\kern0.3em q\\right) $$ . Our results resolve affirmatively a conjecture of Scott, who addressed the case q=2$$ q=2 $$ .","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On subgraphs with degrees of prescribed residues in the random graph\",\"authors\":\"Asaf Ferber, Liam Hardiman, M. Krivelevich\",\"doi\":\"10.1002/rsa.21137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that with high probability the random graph Gn,1/2$$ {G}_{n,1/2} $$ has an induced subgraph of linear size, all of whose degrees are congruent to r(modq)$$ r\\\\kern0.3em \\\\left(\\\\operatorname{mod}\\\\kern0.3em q\\\\right) $$ for any fixed r$$ r $$ and q≥2$$ q\\\\ge 2 $$ . More generally, the same is true for any fixed distribution of degrees modulo q$$ q $$ . Finally, we show that with high probability we can partition the vertices of Gn,1/2$$ {G}_{n,1/2} $$ into q+1$$ q+1 $$ parts of nearly equal size, each of which induces a subgraph all of whose degrees are congruent to r(modq)$$ r\\\\kern0.3em \\\\left(\\\\operatorname{mod}\\\\kern0.3em q\\\\right) $$ . Our results resolve affirmatively a conjecture of Scott, who addressed the case q=2$$ q=2 $$ .\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21137\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21137","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了随机图Gn,1/2 $$ {G}_{n,1/2} $$有一个线性大小的诱导子图,对于任意固定的r $$ r $$和q≥2 $$ q\ge 2 $$,其所有度都与r(modq) $$ r\kern0.3em \left(\operatorname{mod}\kern0.3em q\right) $$相等。更一般地说,对于任何以q为模的度数的固定分布也是如此$$ q $$。最后,我们表明,我们可以高概率地将Gn,1/2 $$ {G}_{n,1/2} $$的顶点划分为q+1 $$ q+1 $$个几乎相等大小的部分,每个部分都诱导出一个所有度都等于r(modq) $$ r\kern0.3em \left(\operatorname{mod}\kern0.3em q\right) $$的子图。我们的结果肯定地解决了斯科特的一个猜想,他解决了q=2 $$ q=2 $$的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On subgraphs with degrees of prescribed residues in the random graph
We show that with high probability the random graph Gn,1/2$$ {G}_{n,1/2} $$ has an induced subgraph of linear size, all of whose degrees are congruent to r(modq)$$ r\kern0.3em \left(\operatorname{mod}\kern0.3em q\right) $$ for any fixed r$$ r $$ and q≥2$$ q\ge 2 $$ . More generally, the same is true for any fixed distribution of degrees modulo q$$ q $$ . Finally, we show that with high probability we can partition the vertices of Gn,1/2$$ {G}_{n,1/2} $$ into q+1$$ q+1 $$ parts of nearly equal size, each of which induces a subgraph all of whose degrees are congruent to r(modq)$$ r\kern0.3em \left(\operatorname{mod}\kern0.3em q\right) $$ . Our results resolve affirmatively a conjecture of Scott, who addressed the case q=2$$ q=2 $$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信