不连续Galerkin框架中Hardy空间方法的表述

S. Hughey, B. Shanker, A. Baczewski
{"title":"不连续Galerkin框架中Hardy空间方法的表述","authors":"S. Hughey, B. Shanker, A. Baczewski","doi":"10.1109/APS.2014.6905449","DOIUrl":null,"url":null,"abstract":"Local transparent boundary conditions (TBCs) based upon the pole condition have shown a great deal of promise in recent years. Only recently has the pole condition been applied to the Maxwell Equations with the aid of vector Hardy space infinite elements [1]. In this work, we describe a variation on the conformal Finite Element formulation presented in [1] within an interior penalty Discontinuous Galerkin (DG) framework. Our primary reasons for doing so are the use of nonconformal meshing at the interior/exterior boundary and the use of locally-enriched function spaces to include desirable physics in numerical solutions.","PeriodicalId":6663,"journal":{"name":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","volume":"12 1","pages":"2244-2245"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation of the Hardy space method in a Discontinuous Galerkin framework\",\"authors\":\"S. Hughey, B. Shanker, A. Baczewski\",\"doi\":\"10.1109/APS.2014.6905449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local transparent boundary conditions (TBCs) based upon the pole condition have shown a great deal of promise in recent years. Only recently has the pole condition been applied to the Maxwell Equations with the aid of vector Hardy space infinite elements [1]. In this work, we describe a variation on the conformal Finite Element formulation presented in [1] within an interior penalty Discontinuous Galerkin (DG) framework. Our primary reasons for doing so are the use of nonconformal meshing at the interior/exterior boundary and the use of locally-enriched function spaces to include desirable physics in numerical solutions.\",\"PeriodicalId\":6663,\"journal\":{\"name\":\"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)\",\"volume\":\"12 1\",\"pages\":\"2244-2245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2014.6905449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2014.6905449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于极点条件的局部透明边界条件(tbc)显示出很大的发展前景。直到最近才将极点条件应用到向量Hardy空间无穷元的Maxwell方程中[1]。在这项工作中,我们描述了在内罚不连续伽辽金(DG)框架内对[1]中提出的保形有限元公式的一种变化。我们这样做的主要原因是在内部/外部边界使用非保形网格,并使用局部丰富的函数空间在数值解中包含理想的物理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation of the Hardy space method in a Discontinuous Galerkin framework
Local transparent boundary conditions (TBCs) based upon the pole condition have shown a great deal of promise in recent years. Only recently has the pole condition been applied to the Maxwell Equations with the aid of vector Hardy space infinite elements [1]. In this work, we describe a variation on the conformal Finite Element formulation presented in [1] within an interior penalty Discontinuous Galerkin (DG) framework. Our primary reasons for doing so are the use of nonconformal meshing at the interior/exterior boundary and the use of locally-enriched function spaces to include desirable physics in numerical solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信