电磁算法的理论与应用

M. Gupta, Yihua Chen
{"title":"电磁算法的理论与应用","authors":"M. Gupta, Yihua Chen","doi":"10.1561/2000000034","DOIUrl":null,"url":null,"abstract":"This introduction to the expectation–maximization (EM) algorithm provides an intuitive and mathematically rigorous understanding of EM. Two of the most popular applications of EM are described in detail: estimating Gaussian mixture models (GMMs), and estimating hidden Markov models (HMMs). EM solutions are also derived for learning an optimal mixture of fixed models, for estimating the parameters of a compound Dirichlet distribution, and for dis-entangling superimposed signals. Practical issues that arise in the use of EM are discussed, as well as variants of the algorithm that help deal with these challenges.","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"15 1","pages":"223-296"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"342","resultStr":"{\"title\":\"Theory and Use of the EM Algorithm\",\"authors\":\"M. Gupta, Yihua Chen\",\"doi\":\"10.1561/2000000034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This introduction to the expectation–maximization (EM) algorithm provides an intuitive and mathematically rigorous understanding of EM. Two of the most popular applications of EM are described in detail: estimating Gaussian mixture models (GMMs), and estimating hidden Markov models (HMMs). EM solutions are also derived for learning an optimal mixture of fixed models, for estimating the parameters of a compound Dirichlet distribution, and for dis-entangling superimposed signals. Practical issues that arise in the use of EM are discussed, as well as variants of the algorithm that help deal with these challenges.\",\"PeriodicalId\":12340,\"journal\":{\"name\":\"Found. Trends Signal Process.\",\"volume\":\"15 1\",\"pages\":\"223-296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"342\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/2000000034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 342

摘要

对期望最大化(EM)算法的介绍提供了对EM的直观和数学严谨的理解。EM的两个最流行的应用被详细描述:估计高斯混合模型(GMMs)和估计隐马尔可夫模型(hmm)。EM解决方案也得到了学习固定模型的最佳混合,估计复合狄利克雷分布的参数,并解除纠缠的叠加信号。讨论了在EM使用中出现的实际问题,以及有助于处理这些挑战的算法的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory and Use of the EM Algorithm
This introduction to the expectation–maximization (EM) algorithm provides an intuitive and mathematically rigorous understanding of EM. Two of the most popular applications of EM are described in detail: estimating Gaussian mixture models (GMMs), and estimating hidden Markov models (HMMs). EM solutions are also derived for learning an optimal mixture of fixed models, for estimating the parameters of a compound Dirichlet distribution, and for dis-entangling superimposed signals. Practical issues that arise in the use of EM are discussed, as well as variants of the algorithm that help deal with these challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信