V. Kotlyar, E. Abramochkin, A. Kovalev, A. Savelyeva
{"title":"双拉盖尔-高斯光束","authors":"V. Kotlyar, E. Abramochkin, A. Kovalev, A. Savelyeva","doi":"10.18287/2412-6179-co-1177","DOIUrl":null,"url":null,"abstract":"We show here that the product of two Laguerre-Gaussian (LG) beams, i.e. double LG beams (dLG), can be represented as finite superposition of conventional LG beams with certain coeffi-cients that are expressed via zero-argument Jacobi polynomials. This allows obtaining an explicit expression for the complex amplitude of the dLG beams in the Fresnel diffraction zone. Generally, such beams do not retain their structure, changing shape upon free-space propagation. However, if both LG beams are of the same order, we obtain a special case of a \"squared\" LG beam, which is Fourier-invariant. Another special case of the dLG beams is obtained when the azimuthal indices of the Laguerre polynomials are equal to n – m and n + m. For such a beam, an explicit expression is obtained for the complex amplitude in the Fourier plane. We show that if the lower indices of the constituent LG beams are the same, such a double LG beam is also Fourier-invariant. Similar to conventional LG beams, the product of LG beams can be used for optical data transmission, since they are characterized by azimuthal orthogonality and carry an orbital angular momentum equal to the topological charge.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Double Laguerre-Gaussian beams\",\"authors\":\"V. Kotlyar, E. Abramochkin, A. Kovalev, A. Savelyeva\",\"doi\":\"10.18287/2412-6179-co-1177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show here that the product of two Laguerre-Gaussian (LG) beams, i.e. double LG beams (dLG), can be represented as finite superposition of conventional LG beams with certain coeffi-cients that are expressed via zero-argument Jacobi polynomials. This allows obtaining an explicit expression for the complex amplitude of the dLG beams in the Fresnel diffraction zone. Generally, such beams do not retain their structure, changing shape upon free-space propagation. However, if both LG beams are of the same order, we obtain a special case of a \\\"squared\\\" LG beam, which is Fourier-invariant. Another special case of the dLG beams is obtained when the azimuthal indices of the Laguerre polynomials are equal to n – m and n + m. For such a beam, an explicit expression is obtained for the complex amplitude in the Fourier plane. We show that if the lower indices of the constituent LG beams are the same, such a double LG beam is also Fourier-invariant. Similar to conventional LG beams, the product of LG beams can be used for optical data transmission, since they are characterized by azimuthal orthogonality and carry an orbital angular momentum equal to the topological charge.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1177\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We show here that the product of two Laguerre-Gaussian (LG) beams, i.e. double LG beams (dLG), can be represented as finite superposition of conventional LG beams with certain coeffi-cients that are expressed via zero-argument Jacobi polynomials. This allows obtaining an explicit expression for the complex amplitude of the dLG beams in the Fresnel diffraction zone. Generally, such beams do not retain their structure, changing shape upon free-space propagation. However, if both LG beams are of the same order, we obtain a special case of a "squared" LG beam, which is Fourier-invariant. Another special case of the dLG beams is obtained when the azimuthal indices of the Laguerre polynomials are equal to n – m and n + m. For such a beam, an explicit expression is obtained for the complex amplitude in the Fourier plane. We show that if the lower indices of the constituent LG beams are the same, such a double LG beam is also Fourier-invariant. Similar to conventional LG beams, the product of LG beams can be used for optical data transmission, since they are characterized by azimuthal orthogonality and carry an orbital angular momentum equal to the topological charge.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.